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Abstract

Population Consequences of Age-Dependent Maternal Effects in Rockfish

(Sebastes spp.)
by

Yasmin Lucero

I present a model of the early life history of a rockfish that includes an age-dependent
maternal effect. The model is designed to accurately reflect the diverse uncertainties
we have about early life history processes. The first portion of this thesis is devoted
to an analytical treatment of the deterministic early life history model. I emphasize
uncertainty about the functional form of density-dependent processes in the juvenile
stage. The remainder of the thesis is devoted to demonstrating the properties of an age-
structured population simulation with a productivity function that includes a maternal
effect. I begin by examining a deterniinistic system, and then extend the analysis to
a stochastic system. The simulation is used to calculate the time to recovery of an
overfished rockfish population. I find that in the presence of an age-dependent maternal
effect: (1) older populations are generally more productive than younger populations
of the same biomass, (2) old fish provide a recovering population with buffering from
environmental variability, (3) the size of the population impact of the effect depends
significantly on the underlying life history pattern, and (4) managing an overfished
population for age-structure has the largest positive impact when the rebuilding plan

includes moderate harvest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To J.M.,

for everything

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgments

I am grateful to my committee: Marc Mangel, Alec MacCall and Chris Edwards for all
of their hard work. In particular, I would like to thank my advisor and teacher, Marc
Mangel for showing me how to see things his way.

Many thanks to Phil Levin for setting me on this course and for many helpful
discussions. Thanks to Herbie Lee for teaching me the fundamentals of probability and
for answering all my questions. Thanks to Bruno Sansé for setting me on firm statistical
footing, and to Andi Stephens for making sure that I learned R properly. Thanks to
Chris Petersen for teaching me all I really needed to know about marine life histories.
And, as always, acknowledgement is due to John G. T. Anderson for being my first
teacher, and encouraging high standards, enforced from within.

Thanks and true gratitude are due to Cristie Boone, Leah Johnson, Kristen
Honey, Kate Siegfried, Kate Cresswell, Andi Stephens, Christine Alfano, Lee Maranto,
Jay Strader and Jason Melbourne for being on my team.

Thanks to Darren Johnson for giving permission to use his data to illustrate
uncertainty about density-dependence. Thanks to Steve Ralston for sharing the settle-
ment data. And thanks to Sue Sogard for sharing with me some insightful preliminary
results of her follow-up research.

This work was supported by the NMFS/Sea Grant Population Dynamics Fel-

lowship and the Center for Stock Assessment Research, a partnership between UC Santa

Cruz and the NMFS-SWFSC Santa Cruz Lab.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 Age-Based Differences

An important goal of contemporary fisheries science is to make Ecosystem
Based Management operational. This congressionally mandated program is intended
to improve fisheries management by placing it in the broader ecosystem context. A
small subset of this large program is the goal to improve stock assessment estimates by
addressing intra-population heterogeneity (Pikitch et al. 2004).

Traditional stock assessment models, like many process based models, work by
scaling up the properties of an idealized “average” individual. However, ecology informs
us of many ways in which fish populations are poorly represented by the idealized
individual. Among other things, fisheries scientists are concerned with determining
when stock assessment estimates can be improved by addressing deviations from the

idealized average model.
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One such area of intra-population heterogeneity is age-based differences. It is
common in fishes for fecundity per unit-biomass to be age-dependent. Some examples
of species with this characteristic are Atlantic cod (Gadus morhua, Marteinsdottir and
Begg 2002), Northern mottled sculpin (Cottus b. bairdi, Ludwig and Lange 1975), North
sea haddock (Melanogrammus aegelfinus, Hislop 1988), and Pacific sardine (Sardinops
sagaz, Plaza et al. 2002).

Stock assessment models often address this heterogeneity by using age-dependent
fecundity parameters. An example of this approach is found in Stock Synthesis 2 (552),
a software package commonly used for stock assessments on the U.S. west coast (Methot
2005). This approach requires measurements of fecundity at age, which are not always
available, especially for the oldest individuals. But, overall the solution implemented in
552 adequately addresses differences in fecundity with age.

Until recently, interest in age-based differences has focused on age-based fe-
cundity (i.e., offspring quantity as a function of the mother’s age - hereafter referred
to as “maternal age”). But there is a new focus on offspring quality as a function of
maternal age. In Figure 1.1 I show results from a laboratory study that found an effect
of maternal age on larval quality in Black rockfish, Sebastes melanops (Berkeley et al.
2004a). They found that maternal age affects the larvae’s rate of growth and ability
to resist starvation. Specifically, larvae from older mothers grow faster (3-4 times as
fast) and resist starvation better (more than twice as long) than larvae from younger

mothers.

This phenomenon is an age-dependent maternal effect. A maternal effect is a
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Figure 1.1: Larval growth and survival under starvation conditions for S. melanops.
Figure redrawn from Berkeley et al. 2004a, data and regression coefficients taken from
the paper. The upper panel regression equation is 7' = —15.23 + 28.79(1 — ¢~023),
where 72 = 0.80 and p < 0.0001. The lower panel regression equation is G = —0.13 +
0.2(1 — e7%%0%) where 2 = 0.71 and p = 0.0006.

trait that is inherited, but non-genetic (Lacey 1998). An age-dependent maternal effect
occurs when the inheritance of the trait is determined by maternal age. Maternal effects
are common in nature, but are usually driven by features of the maternal experience,
such as the climate conditions experienced by the mother (Beckerman et al. 2002,
Beckerman et al. 2006, Benton et al. 2001, Ginzburg 1998, Plaistow et al. 2006). An
age-dependent maternal effect is unusual.

Follow-up research uncovered similar maternal effects in Sebastes serranoides,

mystinus and flavidus (Sogard 2006, personal communication); this result, in combi-
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nation with the overall similarity in reproductive physiology of rockfishes (Love et al.

2002), makes it likely that an age-dependent maternal effect is common in rockfish.

1.2 Scientific Response to the Maternal Effect

The idea that reproductive quality depends on age is new, so the result in
Figure 1.1 has attracted considerable interest. Many species of rockfish (genus Sebastes)
are harvested and several are overfished (PFMC 2006), resulting in dramatic changes
in population age-structure (Harvey et al. 2006). As a consequence,' the discovery
of an age-dependent maternal effect has raised significant interest in learning whether
population recovery can be accelerated by managing rockfish for age-structure (Palumbi
2004).

Several researchers have suggested that an age-dependent maternal effect ren-
ders rockfish especially well-suited to marine reserves. Individuals within a reserve
experience lowered mortality and thus survive longer on average, leading to an older
subpopulation within the reserve. Among others, Berkeley at al. (2004b) predict that
this older subpopulation will have increased productivity due to the age-dependent ma-
ternal effect (Birkeland and Dayton 2004).

However, it can not be assumed that the observed effect will result in greater
productivity for older populations. The age-dependent maternal effect has been mea-
sured only in the first several weeks of life, but productivity depends on the number of

individuals who survive to reproductive age, about six years in Black rockfish. Larvae
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must overcome many obstacles before they recruit to the reproductive population, as
sketched in Figure 1.2.

O’Farrell and Botsford (2005 and 2006) sought to calculate the population
consequences of an age-dependent maternal effect. They transformed the improved
larval quality into units of effective fecundity, thereby reducing the problem of age-
dependent larval quality to the problem of age-dependent fecundity which is familiar
and well understood. They did this by constructing a statistic named lifetime egg
production (LEP), modeled so that an individual’s egg production increases with age.
They calculated population-wide LEP as a function of population age-structure. They
found that, based on the laboratory measurements shown in Figure 1.1, most of the
young mothers with low larval success were not yet mature, or only recently mature.
The net result was that the addition of an age-dependent maternal effect had an impact
very much like a small shift in the maturity function.

Spencer et al. (2007) sought to to determine whether successful pacific ocean
perch (Sebastes alutus) management requires considering maternal effects. They were
concerned that the presence of a maternal effect in 5. alutus could invalidate their calcu-
lations of sustainable harvest levels because they failed to take into account changes in
productivity due to changes in population age-structure. They constructed a hypothet-
ical maternal effect for S. alutus, based on the the results from Berkeley et al. (2004a),
and used this to calculate F,;,, the fishing level that produces maximum sustainable
vield. They found F,s, to be insensitive to the presence of maternal effects.

Both of these investigations found that maternal effects had only marginal
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population consequences, suggesting that no management action is necessary. However,
both studies assumed that increasing larval quality is equivalent to increasing fecundity.
Neither study addressed the potential consequences of differential larval quality on the
early life ecology of rockfish.

There are five kinds of process uncertainty that are obstacles to predicting the

population consequences of an age-dependent maternal effect:

1. Persistence of the maternal effect

O

. Magnitude of maternal effect advantage
3. Magnitude of early life survival rates

4. Functional form of density-dependence

T

. Environmental variability

I develop these five uncertainties in the following section.

1.3 Rockfish Ecology

Rockfish are remarkable for their high speciosity and their potential for long
lives. There are over fifty species along the west coast of North America (Love et
al. 2002) and they have maximum ages ranging from about 10--200 years (Mangel et
al. 2007). Like most marine animals, their early life history is composed of a pelagic
larval stage followed by a benthic juvenile stage (Figure 1.2). This sequence is called
a bipartite life history. In the case of rockfish, the pelagic stage is approximately six

6
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months long, and the juvenile stage is from eighteen months to several years, depending
on the species and how we define recruitment.

Larvae do not eat in the laboratory; by necessity laboratory studies are limited
to several weeks, until the larvae die of starvation (personal communication, Berkeley
2006). The maternal effect has thus only been observed in the early larval stage, and

there is no empirical evidence to support or refute an impact at later life stages.

maternal effect

Egg : ~ observed here

inside mother

§ ¢ %
& e

Does the

maternal $ § % ?’
effect T @ . :
persist - < Rockfish

to here?

Life History

benthic, shallow

Juvenile

Figure 1.2: Schematic diagram of rockfish life history. Laboratory results reveal a strong
maternal effect in the early larval stage. We want to know if this impacts how many
fish survive to reproductive maturity.

However, there is an extensive literature about the latent. effect of variation in

larval growth in fishes with bipartite life histories (Shima and Findlay 2002, Pechenik

1998). Variation in larval growth often leads to variation in growth or size at settlement.
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Variation in size and growth at settlement often leads to variation in juvenile survival,
sometimes called the growth-mortality hypothesis (see Sogard (1997) for a review). Thus
we have reason to expect that this early advantage may persist. In Figure 1.3, I present

three hypotheses for the persistence of the maternal effect.

Pelagic Stage Benthic Stage
density-dependent density-dependent
mortality absent mortality present
Big
Adv i AP :
dvantage " e eee e A
\ ~ e - - .
\ \
\ e
\ o
s -~
\ RN
\ R < B
Small *C T~
Advantage ~ o e

‘|‘ Time

time of
settlement

Figure 1.3: The z-axis is time in the early life history, the y-axis is the size of the
advantage, due to a maternal effect, enjoyed by offspring from old mothers over offspring
from young mothers. The red circle represents data that show the maternal effect
confers a big advantage in the early pelagic stage. We do not know what follows: Does
the advantage (A) persist? Does it (B) dissipate gradually? Or, does it (C) dissipate
immediately? The dashed lines illustrate these hypothetical patterns. A major life
history shift occurs at the time of settlement. The population consequences of the
maternal effect depends on whether there is still a significant advantage at the time of
settlement.

Notice that the y-axis in Figure 1.3 lacks numbers or units. We expect that the

observed changes in resistance to starvation and growth rate are ecologically important.
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But, we do not have a clear idea of how to translate those numbers into overall survival
or mortality rates for the pelagic and benthic stages. And we do not know how the
advantage in survival rate will evolve over time.

To understand how an age-dependent maternal effect could influence recruit-
ment success, we must examine the ecological processes that contribute to recruitment.
In Figure 1.4 I provide a stage-structured summary of the significant ccological factors

in the early life history of a rockfish.

Ecological Functional Model
TIME Factors Form Parameter
pre-larval o fecundity?
stage e parturition!
density ¢
pelagic e adverse advection? independent
larval e water temperature3
stage e food limitation*
T=0
® water tempera‘cure'5 density 72
benthic o food limitation® independent
juvenile
stage e predation® 7 & 9 density ~
o juvenile competition®  dependent
7=T o cannibalism*®

\/

1Bobko and Berkeley 2004, 2Ainley et al. 1993, 3Ralston and Howard 1995, *Bjorkstedt
et al. 2002, °Love et al. 1991, SHobson et al. 2001, "Hixon and Jones 2005, 8Johnson
20062, ? Adams and Howard 1996, P%included as plausible, but speculative, mechanisms.

Figure 1.4: The model treats production in two steps, pre-settlement (7 < 0) and
post-settlement (v > 0). All pre-settlement processes are summarized by ¢, the rate
settlement. Post-settlement processes are separated into the density-independent rate
of mortality, i, and the density-dependent rate of mortality, .
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The first stage presented in Figure 1.4 is the pre-larval stage. Rockfish are
viviparous; unlike most fishes they do not release eggs and sperm (i.e., spawning) but
rather they release larvae (i.e., parturition). Therefore, their reproductive investment
occurs in two stages: pre- and post-fertilization. The fecundity rate measures the success
of the pre-fertilization stage of egg development (i.e., vitellogenesis). The parturition
rate measures the success of the post-fertilization stage of maternal feeding (i.e., ma-
tritrophy). Both the rate of fecundity and the rate of parturition are influenced by
maternal condition and thus indirectly by the availability of food in the previous year.
Older mothers are known to have both higher fecundity and parturition rates (Bobko
and Berkeley 2004). All other things being equal, this alone would cause a positive
correlation between the settlement rate (¢) and maternal age.

The next stage presented in Figure 1.4 is the pelagic larval stage. Once re-
leased, rockfish larvae are part of the diurnally migrating micronekton layer of the
surface occan. They are opportunistic feeders. When they are very small they rely on
copepod nauplii and invertebrate eggs. As they grow larger they extend their diets to
include copepodites, adult copepods, and euphausiids (Moser and Boehlert 1991). In
addition to participating in the diurnal migration they school most intensely at shallow
depths (Lenarz et al. 1991), these are both behaviors for avoiding surface predators
(e.g., seabirds, marine mammals, larger pelagic fishes). However, they also diurnally
migrate to maintain proximity to their prey.

Like many animals, the optimum temperature for growth shifts ontegenetically:

smaller fish grow fastest at higher temperatures and as the fish grow their thermal

10
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optimum declines (Lenarz at al. 1991, Boehlert and Yoklavich (1983) demonstrate this
specifically for Black rockfish). Surface water temperature in the California Current
varies generally with climate state (e.g., El nino years bring warmer surface oceans into
central California). The depth of the thermocline is also a significant feature of the
thermal environment of larvae.

Larvae control their depth to manage several competing needs. Larvae need
to maximize their rate of food encounter; this is why they diurnally migrate and also
why the highest larval densities are found near upwelling fronts (Bjorkstedt et al. 2002,
Lenarz et al. 1991). Larvae need to avoid predators; this is why they exhibit strong
schooling behavior in the surface ocean (Lenarz et al. 1991) and also an additional
reason for diurnal migration. Larvae need to manage their body temperature to optimize
growth; this is why they are observed at deeper depths as they growth larger (Sakuma
et al. 1999). Finally, larvae need to avoid being transported away from nutrient rich
fronts; this is why larvae generally avoid the shallow surface offshore currents caused by
Ekman transport (Lenarz et al. 1991).

As larvae get larger they are found in a wider range of depths. Small larvae
choose a depth that is favorable on average while larger larvae take advantage of their
greater swimming strength to continuously relocate to the most favorable depth (Lenarz
et al. 1991).

Eventually, succesful larvae undergo the physiological transition to become
juveniles (flexion). These pelagic juveniles must move inshore to find suitable benthic

habitat for settlement. The ability to swim to the appropriate depth is crucial for finding
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onshore currents to carry them to suitable habitats.

Throughout the larval stage, larger body size provides a significant survival
advantage. The positive correlation between growth rate and maternal age shown in
Figure 1.1 should lead to a positive correlation between the settlement rate ¢ and ma-
ternal age. Additionally, the greater starvation resistance of larvae from older mothers
(also shown in Figure 1.1) should improve their settlement rate by leaving them less
dependent on finding food and better able to attend to their competing needs to avoid
predators and manage their body temperature.

The final stage presented in Figure 1.4 is the benthic juvenile stage. If a
rockfish survives to settle, it continues to face several of the same concerns of the pelagic
environment: they need to maximize their food intake, manage their body temperature
and avoid predators. In the pelagic stage these concerns were managed largely through
vertical migration. But in the benthic stage they are managed primarily by finding
shelter space. Juveniles in benthic habitat rely on shelter from habitat structure such
as rocky crevices or kelp fronds (Love et al. 2002). Suitable shelter space is often
limited, this creates competition for the optimal habitat (Johnson 2006b).

Additionally, the horizontal distribution of juveniles is far more concentrated in
the benthic environment than in the pelagic environment. This high population density
attracts density-cued predators, such as adult rockfish (Hobson et al. 2001, Adams and
Howard 1996). The density-cued behavior of predators renders predation mortality a
density-dependent process in the benthic stage.

Large body size continues to be a significant survival advantage in the ben-
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thic stage. Larger juveniles can swim away from predators more quickly and compete
more effectively for quality shelter space (Paradis et al. 1996). The latent effect of a
an early life growth advantage can be an important determinant of juvenile mortality
rates. This advantage does not only impact the privileged juveniles from older moth-
ers. Large juveniles continue to attract density-cued predators, however, those predators
preferentially target the easier to catch smaller juveniles. Thereby, the presence of these
privileged juveniles serves to increase predation pressure on their smaller conspecifics.
This raises the possibility that an age-dependent maternal effect may have negative as
well as positive impacts on population productivity.

The time of transition from the pelagic to the benthic stage is ecologically
significant. As shown in Figure 1.4, at the time of settlement there is a qualitative shift
in the ecological processes from strictly density-independent processes to a combina-
tion of density-independent and density-dependent processes. Because of this, I model
productivity in two stages: the pelagic stage before settlement and the benthic stage
after settlement. Mortality in the pre-settlement stage is density-independent (Hixon
and Webster 2002, Ralston and Howard 1995). Therefore, this is modeled with a sim-
ple proportionality constant. Mortality in the post-settlement stage is more complex,
having both density-independent and density-dependent components. For this stage, I
employ a stock-recruitment model with both density-independent mortality and density-
dependent mortality.

The production model is reduced to these three important basic parameters:

¢, the rate of settlement per-unit spawning stock biomass; p, the density-independent
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rate of per-capita mortality in the juvenile stage; and <, the density-dependent rate of
per-capita mortality in the juvenile stage.

There are no data to suggest what the values of these parameters should be in
nature. Ignorance of these basic survival rates is a major source of uncertainty about
population productivity—true even in the absence of maternal effects—and complicates
our ability to assess the consequences of the maternal effects.

Finally, field studies indicate that predation is the significant source of density-
dependent mortality, either by direct mortality or by interference competition (e.g.,
competition for shelter) (Hobson et al. 2001, Hixon and Jones 2005, Hixon and Webster
2002, Johnson 2006a). A recent study illustrated that the functional form of density-
dependence is a function of predator density: Johnson (2006b) built nine cubic meter
enclosures in kelp beds off the coast of central California. He controlled densities of
juveniles and predators within the enclosures and monitored juvenile mortality for forty-
eight hours. Figure 1.5a shows his result, along with the best fit linear models. It is not
known which of these predator densities most resemble the experience of rockfish.

Five sources of process uncertainty prevent us from predicting the population

consequences of an age-dependent maternal effect. These are:

1. Persistence of the maternal effect. How does the advantage evolve in time?
Do juveniles from older mothers have a survival advantage over juveniles from younger

mothers? Do recruits from older mothers have an advantage?
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Figure 1.5: Panel (a) shows data from an enclosure study of juvenile rockfish (Johnson
2006b). The red circles are from an enclosure with a high density of predators (five
predators), the blue triangles are from an enclosure with medium density of predators
(three predators) and the green crosses are from an enclosure with a low density of
predators (one predator). The lines are the best fit lines to data: for high predation
(red line), p = 0.03, R? = 0.297, F = 5.914; for medium predation (blue line), p = 0.94,
R? = 0.0004, F = 0.005; for low predation (green line), p = 0.017, R? = 0.37, F = 7.566.
Panel (b) shows the Beverton-Holt and Ricker models.

2. Magnitude of maternal effect advantage. Do larvae from old mothers settle
50% more than larvae from young mothers, or 100% more? Do juveniles from older
mothers have 20% lower mortality than juveniles from young mothers, or 60% lower

mortality?

3. Magnitude of early life survival rates. How many settlers are there per
mother? How many juveniles die each day after settlement? How many juvenile deaths

are due to density-dependent processes?

15
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4. Functional form of density-dependence. Does density-dependent mortality
follow a Beverton-Holt pattern or a Ricker pattern? Or, some other pattern? (Munch

et al. 2005a)

5. Environmental variability. Does the variability in food availability, water tem-
perature, and current speed interact with other factors to change the consequences of
the maternal effect?

I model these uncertainties, and examine how population changes depend on
each of them. In this way, I identify the most influential uncertainties and find patterns

that are robust to uncertainty.

1.4 Summary of Modeling Approach

I chose to address the substantial complexity and uncertainty of this system
by adopting a multiple models or multiple hypothesis approach (Hilborn and Mangel
1997). In Figure 1.6 I show a schematic of the computational approach. At the core
of the work is a population simulation that simulates the rebuilding of an overfished
population. The simulation outputs the number of years required for a population to
recover given the harvest rate during rebuilding, the populations productivity, and the
presence and form of a maternal effect. I find that the time to recovery is a valuable
population metric because it is a single measurement that reflects all of the inputs about
which we are uncertain.

I developed a model of an age-dependent maternal effect with the flexibility
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Figure 1.6: Illustration of the computational approach: Several subroutines support an
R script with a population simulation. The simulation script is iterated by a wrapper
script. All of the output of the simulation is stored, including several outputs of nominal
interest. Diagnostic scripts are used to detect failures of the code to behave as expected.
A processing script is used to sift out important outputs from the the raw output.
Plotting scripts are used to visualize and summarize the results.
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to accomodate the range of our uncertainty about the true population consequences
of an age-dependent maternal effect in a rockfish population. I chose a range of input
parameters designed to reflect our uncertainty and I calculated time to recovery for each
set of inputs. This process results in a large simulated dataset.

The heart of the model is the productivity function that incoporates a maternal
effect. In Chapter 2, I present the properties of three versions of the production func-
tion, each with a different assummption about the functional form of density-dependent
mortality. In Chapter 3, I develop the mechanics of the population simulation based on
the productivity function and I explain the model parameterization. Chapters 4 and 5
are devoted to analysis of the resulting simulated dataset.

A particular problem was posed by the solution of the production function. To
model productivity with an age-dependent maternal effect, I developed a multi-variate
stock-recruitment relationship. This allows us to assign different juvenile and larval
mortality rates to the offspring of young and old mothers.

Traditionally, rockfish stock-recruitment is modeled with a Beverton-Holt model.
Unfortunately, the multi-variate version of a Beverton-Holt stock-recruitment model is
technically challenging to work with. The model is a matrix Ricatti equation of a
form that lacks an analytical solution (Zwillinger 1992). The system can be solved
numerically, however, the numerical solution also presents technical challenges. The
multi-variate Beverton-Holt model exhibits a numerical property called stiffness. Stiff
systems of differential equations cannot be solved by explicit algorithms such as the

Runge-Kutte algorithm at the base of most numerical solvers. In Section B.3.6 I explain
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the numerical algorithm I used in the simulation to find a solution to the multi-variate
Beverton-Holt stock-recruit function.

Understanding the population consequences of age-dependent maternal effects
is a small piece of the much larger program to implement Ecosystem Based Management
(EBM). The challenges we face in understanding this one phenomenon are representative
of the challenges facing EBM more broadly: incorporating new ecological knowledge
usually raises numerous complexities and uncertainties. There are key process rates
that have not been measured and may never be measured. Ecological processes are
complex and difficult to describe precisely. And large variability is inherent to the
system. Once crucial measurement needs can be identified, we can find robust patterns
even without perfect ecological knowledge, and that good science can make possible

good decisions in the face of tremendous uncertainty.
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Chapter 2

Productivity with a Maternal Effect

To include a maternal effect in the model, I modify a stock-recruitment model
so that there are multiple age-classes of mothers, each with its own offspring mortality
rates. I then choose values for the mortality and settlement rates that emulate the
age-dependent maternal effect. There are three parameters in the model whereby the
maternal effect may impact productivity (see Figure 1.4). It may be that larvae from
older mothers perform better in the pelagic stage, so that ¢, the per-capita rate of
settlement, is a function of maternal age. It may be that the maternal effect impacts
post-settlement abilities such as cold tolerance and swimming speed (helpful to prevent
being swept offshore), so that p, the benthic rate of density-independent mortality, is a
function of maternal age. Finally, the maternal effect may impact body size at the time
of settlement and thereby impact the ability to avoid predators or compete for shelter:
under these conditions v, the benthic rate of density-dependent mortality, is a function

of maternal age.
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2.1 The Model

The traditional derivation of a stock-recruitment model begins with an ordi-
nary differential equation describing per-capita mortality of juveniles. If n(7) is numbers

of juveniles at time 7, then the differential equation can be written

- Am) (2.1)

where p is the rate of density-independent mortality and A(n) is the rate of density-
dependent mortality. Stock-recruitment models differ in the form of A(n) (i.e., the func-
tional form of density-dependence). The two most familiar stock-recruitment models are
the Beverton-Holt model, where A(n) = yn, and the Ricker model, where A(n) = +8
(Haddon 2001). Here, « is the per-capita rate of density-dependent mortality and S is
the spawning stock biomass.

Most stock-assessments for rockfish use a Beverton-Holt model, but usually
only find moderate to low goodness of fit (Munch et al. 2005, also see Dorn (2002) for
several examples). The assumed form of density-dependence has potential to strongly
influence the conclusions we draw. For this reason, I will consider a range of forms for
density-dependent mortality.

If we compare the experimental result in Figure 1.5 to stock-recruitment mod-
els, we see that when predator density is high a Beverton-Holt model (A(n) = n)
provides a satisfying summary of the data. However, when predator density is lower

a Ricker model (A(n) = vS) is a better fit. In the case of very low predator densi-
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ties, per-capita mortality actually declines with juvenile density. This outcome occurs
presumably because the predator experiences a capacity constraint and cannot further
increase the predation pressure, even when juvenile density increases. There is no tradi-
tional stock-recruit model for the capacity constraint scenario. We could invent a new
stock-recruitment relationship for this case, but this would require a behavioral model
of predation that is beyond the scope of this work (Walters and Martell 2004). However,
we can consider a limiting case of the capacity constraint, the model where there is no
predation at all, and consequently no compensation (A(n) = 0). For brevity, I will treat
this as a special case of the Ricker model where v = 0.

I assume that all three forms of density-dependence are relevant. We begin
with the Ricker mode] because it is analytically tractable, and this analysis prepares
us to understand the other two models. Next, we consider the no predation case, as a
special case of the Ricker model. We then cover the Beverton-Holt model; the general
Beverton-Holt model lacks an analytical solution, and so we build intuition by analyzing
a special case of the Beverton-Holt model that can be solved analytically. Finally, we

look at the numerical solution to the general Beverton-Holt model.

2.2 The Ricker Model

The traditional derivation of a Ricker model begins with Equation (2.1) where
A(n) = «vS. This differential cquation is solved and cvaluated at time T, the end of

the juvenile period. The solution requires an initial condition, n(0) = fS, where f is
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usually interpreted to be the fecundity rate. Finally, the equation is re-parameterized
by a = fe™*T and 8 = 4T. This yields the familiar Ricker stock-recruitment model
(Quinn and Deriso 1999)

R=aSe S (2.2)

To modify the Ricker model, I begin with a differential equation with multiple age-

classes, where the juvenile mortality rates (u and «) depend on maternal age (a).

a 2
1 dnyg o~

= —Ha — Z Yak Sk (2'3)
k=1

ng dr

Here apqy is the maximum maternal age and k is the maternal age of the cohort. In
vector form this is

. _1dn
diag(n) 1:1—; =—pu—~S (2.4)

where n, S and p are vectors of length a,,q,, and 7 is a matrix of dimension @z X Gmaz-

This equation can be solved analytically with the initial condition

na(0) = @aS, (2.5)

Here ¢, is the settlement rate (i.e., the number of juveniles to settle per unit of spawning
stock biomass for juveniles with maternal age a). The solution to the multi-class Ricker

model is

na(7) = $aSaexp { (—ua - {j 7ak5k) T} (2.6)
k=1
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Consider the special case of two age-classes, Class 1 juveniles (n1) from “young” mothers

and Class 2 juveniles (ng) from “old” mothers. The two age-class Ricker model is

n(7) = grS1exp {(—p1 — 11151 — 11252) 7} (2.7)

nao(7) = ¢aSzexp {{—p2 — 12151 — Y2252) 7}

Productivity (R) in the two age-class system is

R =n1(T) + no(T) (2.8)

where T is the length of time of the juvenile period. The total stock size is S = S + S5

and the proportion p of S from “old” fish is

S+ S

| P

P (2.9)

Finally, I reparameterize so that o, = ¢ge T and Bu = vVerI. This yields the

following equation for productivity in the two age-class Ricker model

R=oai(l— p)ge"((l—p)ﬁn-i-pﬁu)g + agpge—((l—lﬁ)ﬁzﬁrpﬁw)g (2.10)

I can now manipulate the parameters o, and B,k to give an advantage to Class 2 offspring
over Class 1 offspring--simulating the age-dependent maternal effect—and then look at

productivity (R) as a function of the population age-structure (p) and the spawning
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stock biomass (S). One of the advantages of this parameterization is that we are able
to reduce the two density-independent parameters, ¢ and u, to one parameter, a.

In the next sections, we examine two cases of the two age-class Ricker model
with a maternal effect: in Case 1 the maternal effect only impacts the density-independent

factors, in Case 2 the maternal effect only impacts the density-dependent factors.

2.2.1 Case 1: Maternal effect in density-independent factors

The first case I consider is ap > a1 and 811 = B2 = P91 = Foo = 3. Here,
the maternal effect impacts the density-independent survival, but has no impact on the
density-dependent interactions. Recall that ag = ¢ge #eT. Therefore this case would
arise if the greater growth and starvation resistance of Class 2 larvae in the pelagic phase
led them to be more robust. Alternatively, this case would result if fecundity increased

with maternal age, a phenomenon ubiquitous in fishes and observed in rockfish (Bobko

and Berkeley 2004). We find

R= alée_ﬂé%—ge"ﬂg(ag —a1)p (2.11)

For a given S‘, R is a linear function of p, with slope Se—55 (ae—cv1). In Figure 2.1(b), the
slope of the lines R(p) depend on the difference as — a1; the strength of the maternal
effect depends on the difference as — a7 and not the ratio as /a1, as we might have
initially guessed.

If S is very large, or S is very small, then the difference in « is no longer
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Figure 2.1: Two plots of Equation (2.11) from Case 1, the Ricker model with the
maternal effect in the density-independent factors only. Panel (a) shows recruitment as
a function of spawning stock biomass and panel (b) shows recruitment as a function of
the proportion of old fish in the population. a; = 0.37 (u; = 0.01, ¢ = 1), ag = 1.47
(p1 =001, ¢ =4), ap —0o1 = 1.1, and B = le — 4 (y = le — 6, T = 100). Note: in a
standard Ricker model, maximum productivity occurs when spawning stock biomass is

1/8.

important (i.e., the maternal effect is no longer important). This observation is borne
out in Figure 2.1(a). When S is very large or very small, there is very little difference
in R for various values of p. But, at intermediate population sizes, changes in p result
in a large spread in R. The implication is that when population size is high, density-
dependent pressure severely limits the total number of individuals who survive. This
property, which is a standard feature of a Ricker model, obscures the impact of even a
strong maternal effect when either S or 8 is large.

Also, Figure 2.1(b) shows that, for any given population size, productivity

increases as p increases. This result suggests that management for age-structurce could
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be effective.

2.2.2 Case 2: Maternal effect in density-dependent factors

The second case is that of a maternal effect that impacts the density-dependent
factors but has no impact on the density-independent factors. There are many ways
to manipulate the values of 8, to model a maternal effect; I chose to model the case
where Class 1 and Class 2 juveniles attract predators in equal numbers, but Class 1
juveniles are more vulnerable to predation (i.e., Class 1 individuals are harder hit by
density-dependent mortality). We can represent this scenario by allowing inter-class
rates to be affected by the maternal effect, 821 < B12, but leaving intra-class rates
unaffected, 22 = B11. Here, I consider a limiting case of this condition: fo1 = 0 while
Bo2 = P11 = P2 = B and a1 = a3 = 0.

Applying this condition to Equation (2.10) yields
R=ad [(1 —p)e PS¢ pe—Pﬂg] (2.12)

This result is not as easy to interpret as Equation (2.11); as a result we look to Figure
2.2 for interpretation. Figure 2.2(a) shows a pattern opposite to the pattern in Figure
2.1(a). Here when § is large, the maternal effect changes recruitment, but when S is
small, the maternal effects matters very little. In this case, increasing the proportion
of old adults in the population initially increases productivity, but as the proportion of

old adults in the population increases further, productivity declines. Class 2 juveniles
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do survive better, but as their numbers increase, their success comes at the expense
of Class 1 juveniles. We see that the lowest productivity occurs when p = 0, but the
highest productivity occurs at intermediate values of p. Also, the larger population size
is, the more extreme the concavity of the function is. Productivity is most significantly

affected by changes in p at the largest population sizes.
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Figure 2.2: Two plots of Equation (2.12) from Case 2, the Ricker model with the
maternal effect in the density-independent factors only. a = 0.37 (u = 0.01, ¢ = 1),
B8 =1le—4 (y = le—6, T = 100). Note: in a standard Ricker model, maximum
productivity occurs when spawning stock biomass is 1/8.

In Figure 2.2(a) when p = 0.2, this Ricker stock-recruitment relationship looks

remarkably similar to a traditional Beverton-Holt stock-recruitment relationship.
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2.2.3 Case 3: Maternal effect in no predation model

Rather than solve a new differential equation we simply treat the case where
A(n) = 0 as a special case of the Ricker model, where v, = 0. To get productivity for

the two age-class no predation model, we substitute y,; = 0 into Equation (2.10) (recall

that Bux = YarT)

R =[(1-p)og + pas]S = 1S + pS(as — 1) (2.13)
(a) (b)
(=] Q
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Figure 2.3: Two plots of Equation (2.13) from Case 3, the no predation model with
a maternal effect. a; = 0.37 (1 = 0.01, ¢ = 1), az = 1.47 (u1 = 0.01, ¢ = 4),
oo — a1 = 1.1.

To model a maternal effect we use the same condition as Case 1, as > a7,

with the same interpretation. The stock-recruitment relationship, R(S), is linear and
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has a slope that is the weighted average (1 — p)a1 + pag. R(p) is also linear, with slope
S (ag — a1). Once again the parameter ag — oy affects the strength of the maternal

effect. We can see in Figure 2.3 that increasing p leads to straightforward increases in

productivity.

2.3 The Beverton-Holt Model

In the Beverton-Holt model density-dependent mortality is proportionate to
juvenile density, A(n) = yn. The multi-class differential equation for the Beverton-Holt

model is

1 dn Amazx
—— = e~ ) YakTk (2.14)
k=1

Ng dr
In vector form this is

. _,dn -
diag(n) IET— =—pu-n (2.15)

where n and p are vectors of length a,4,, and v is a matrix of dimension amgz X Gmaz-
In general this equation cannot be solved analytically and must be solved numerically.
The numerical integration is described in Section B.3.6. Here, to build intuition we

examine a special case that can be solved analytically.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.1 Case 4: A special case with a maternal effect in density-dependent

mortality

Again, we reduce the problem to the two age-class model

dnl

- Hm— 7’11‘77«% — Y12n1N2 (2.16)
-

d'n2 2

ar = —H2N2 — y1n1ng — Y22ny
T

For the special case, we let y1; = v21 = 0 to obtain

dnq .
2y = THn— yi2mang (2.17)
-
T = THaN2 — 93Ny
dr

Equation 2.17 is the case where Class 1 individuals affect no density-dependent mor-
tality. This can be thought of as interference competition, where Class 1 juveniles do
not interfere with Class 2 juveniles or with other Class 1 juveniles, but Class 2 juveniles
do interfere with Class 1 juveniles and with other Class 2 juveniles. Alternatively, this
scenario can be explained with a predation attraction mechanism: it is the larger Class
2 individuals that attract predators, impacting both Class 1 and Class 2 juveniles. In

either case, the maternal effect has a strong impact on the density-dependent factors.
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The solution of Equation (2.17) is

ny(0)e~1T na(0)e 2T

N
12 J22 — o—p2T
[1 + 22ny(0) (1 - e—uzT)] Lt gne(0) (1 —emkel)

R= (2.18)

The numerators, n{e #17 and nJe~#2T, give the number of juveniles which survive to
time 7" in the absence of any density-dependent effects for Class 1 and Class 2 juveniles,
respectively. These numbers are scaled by a denominator that accounts for density-
dependent interactions. In the case where 15 = 799, Class 1 and Class 2 numbers
are scaled equally by density-dependence. Typically, we anticipate 13 > 90, and that
more Class 1 juveniles are lost to density-dependent factors than Class 2 juveniles. In
this special case of the Beverton-Holt model, juveniles from “young” mothers are more
vulnerable than juveniles from “old” mothers.

The denominators of Equation (2.18) feature the non-dimensional parameter
%ng(O). This parameter measures the importance of density-dependent factors rel-
ative to density-independent factors. When density-dependent factors are relatively
important, y92n2(0) >> ug, productivity is relatively low.

If we further restrict the special case so that v12 = 99 and also reintroduce p
and the initial condition from Equation (2.5) (ne(0) = ¢4S,), Equation (2.18) reduces

to

n_ é1(1 — p)ge_‘“T + q')zp.é’e“”?T
1+ %égpﬁ (1 — e=#eT)

(2.19)

Now we define the density-independent parameter o, = ¢,e T as we did in the Ricker

32

| Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



model, and define a new parameter

By = 24, (1 — emroT) (2.20)
2

Equation 2.20 is the same reparameterization that is used in a traditional, single age-
class Beverton-Holt model (Quinn and Deriso 1999). Recall that ¢y is the per-capita
number of juveniles at the start of the benthic stage; (1 — e’“?T) is the proportion of
Class 2 settlers that do not survive to time T for density-independent reasons. The ratio
Y22/ pt2 is the relative importance of density-dependent mortality to density-independent
mortality in the benthic stage. Put these together, and Gy is approximately the per-
capita rate of mortality to time T of Class 2 individuals due to density-dependent

mortality. If we substitute these parameters into Equation (2.19) we obtain

B oS + (a2 — a1)Sp

R — (2.21)
1+ BopS
First, notice the limits p — 0 (no old fish) and p — 1 (no young fish)
lim R = o, § lim R = —a~—2—§—: (2.22)
p—0 p—1 1+ [))QS

In these special cases the Class 1 fish effect no density-dependent mortality; in the
absence of Class 2 fish, recruitment approaches a density-independent function. When
there are only Class 2 fish, then recruitment reduces to a traditional Beverton-Holt

stock-recruitment function (Quinn and Deriso 1999).
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Notice that the parameter as — a; appears again. In the Ricker model this
difference determined the slope of the function R(p) (i.e., the strength of the maternal
effect). Here its role is difficult to isolate from p.

Finally, if S>> 1 then Equation (2.21) is approximately

1 — . - ,
lim R= ( p)oil + poz
S—o0 B2

(2.23)

For a given p, the stock-recruitment curve asymptotes to a constant value, as in a
traditional Beverton-Holt model. But, if p changes as S changes, this disrupts the

asymptotic property of this Beverton-Holt model.

2.3.2 Case 5: Maternal effect in ¢,

Figure 2.4 shows the numerical solution of the two age-class Beverton-Holt
model when the maternal effect only impacts the survival of the pelagic phase. We can
see that productivity generally increases as a function of p, but the magnitude of the
increase is smaller when 3 is high.

Raising p from a low value to an intermediate value (0 to 0.2) has a much
larger impact on productivity than raising p from an intermediate value to a high value

(0.4 t0 0.6).
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Figure 2.4: Two plots of the numerical solution to Equation (2.16); this plot is from
Case 4, the Beverton-Holt model with the maternal effect in the density-independent
pelagic stage. ¢1 = 1, ¢2 = 4, 1 = po = 0.01, 111 = Y12 = Y21 = Y22 = le — 6.

2.3.3 Case 6: Maternal effect in p,

Figure 2.5 shows the numerical solution of the two age-class Beverton-Holt
model when the maternal effect only impacts the density-independent mortality rate of
the benthic phase. In this case the maternal effect causes juveniles to be more robust in
the benthic stage but does not effect survival of the pelagic stage or their ability to avoid
predators. This situation may occur if larger size is helpful in the benthic phase, but
survival of the pelagic stage is determined by luck rather than quality of the individual.

Here, productivity also consistently increases with p, but the pattern contrasts
with the previous case; the magnitude of the difference increases with population size.
We do see the same phenomenon as in Case 5, where increasing from a low to interme-

diate value of p effects productivity more than increasing from an intermediate to high
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Figure 2.5: Two plots of the numerical solution to Equation (2.16); this plot is Case 5,
the Beverton-Holt model with the maternal effect in the density-independent component
of the benthic stage. ¢1 = ¢o =1, u3 = .03, po = 0.01, 111 = y12 = Y21 = Yo2 = le — 6.

value of p. Though, here the effect is less pronounced.

2.3.4 Case 7: Maternal effect in v,

Figure 2.6 shows the numerical solution of the two age-class Beverton-Holt
model when the maternal effect only impacts the density-dependent mortality rate of
the benthic phase, 4. This is the same limit as in Case 2 of the Ricker model, v;; =
Y12 = Y22 while 91 = 0. Once again, when the maternal effect impacts the density-
dependent mortality rates, the function becomes much more complex. Productivity
does not necessarily increase with p; it is concave with respect to p. As in the case when
the maternal effect impacts p, the magnitude of the productivity differences are largest

when population density is high.
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Figure 2.6: Two plots of the numerical solution to Equation (2.16); this plot is Case 6,
the Beverton-Holt model with the maternal effect in the density-dependent component
of the benthic stage. ¢1 = ¢g =1, 1 = o = 0.01, y11 = v12 = 122 = le — 6, 91 = 0.

2.4 Discussion

Our motivating question is: How will productivity respond to an age-dependent
maternal effect? We want the best possible answer given substantial uncertainty about
the impact of maternal effects on survival and the form of density-dependent mortality.

Productivity is positively correlated with p (the proportion of old fish) when
the maternal effect only impacts the pelagic phase, because then it only impacts density-
independent factors. However, the larger the population size, the less the maternal effect
matters, unless there is almost no compensation in the benthic phase.

In cases where the maternal cffect impacts density-dependent mortality rates

in the benthic stage, the story is significantly more complex. Here, the maternal effect
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confers an advantage to some individuals in the population, but also changes the com-
petitive environment for other individuals. As a result, whole population consequences
are not easy to predict. When part of the advantage conferred by the maternal effect
is an escape from density-dependent mortality, a potential trade-off arises between the
success of the offspring from older mothers and overall productivity. We discover the
possibility that more old fish may fail to increase productivity, and may even decrease
productivity.

In cases where a Beverton-Holt mechanism dominates, larger populations are
generally as or more productive than smaller populations; however in some cases a
younger population is more productive than an older population of the same size. When
a Ricker mechanism prevails, it seem that there is a broad range of circumstances in
which a smaller population is more productive than a larger population. This outcome
is a feature of a traditional Ricker model with no maternal effects, but the maternal
effect exacerbates the phenomenon.

When there is no predation, the story is very simple: more old fish lead to
higher productivity. This case is ecologically unrealistic but should not be immedi-
ately dismissed. Rockfish have highly variable recruitment, and it is probable that the
adult population is sustained by rare and very large recruitment classes (Love et al.
2002). Very large recruitinent classes are the classes most likely to overwhelm predation
pressure and resemble a no predation model (recall the low predation case in Figure
1.5a).

It appears there is a relatively narrow set of circumustances where managing for
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age-structure would be harmful to productivity. The circumstances that cause concern
are when juveniles densities are very high and there is a large number of juveniles with
a strong competitive advantage due to a superior ability to avoid predation. In all
other cases, we expect that increasing the proportion of old fish in a population with
an age-dependent maternal effect will yield higher productivity. We do not have the
information we need to quantify how much higher productivity could be, but these
models suggest that very large (50-500%) increases are possible.

In the two age-class population, p is a natural metric for age-structure. It
is natural to think of p as a very small proportion; however, its value is a function
of the threshold age (a:) between “young” and “old.” If we assume a steady-state age

distribution then

];maw e~ Ms g e—Mar _ o—Mamae
F - t _ I3
p(at) - j;z’;nadtw e—]\/[sds - e—]\[ama,t _ e“l\/ja',naz (224)

where Gpqp I8 maximum age, amq: is age of maturity and M is the rate of natural
mortality. For Black rockfish, maximum age is about fifty years, age of maturity is
about six years (Love et al. 2002), M = 0.115 yr~! (Ralston and Dick 2003), and
based on the observed maternal effect, we can guess a; = 10 (Berkeley et al. 2004a).
In this example, a fully protected Black rockfish population with a steady-state age-
distribution has p = 0.63 (i.e., 63% of the population is older than ten years). In
contrast, current Black rockfish populations are heavily harvested, and only about 16%

of the reproductive population is older than ten years (Ralston and Dick 2003).
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It the maternal effect simultaneously impacts both the density-independent
factors and the density-dependent factors, productivity gains from the advantage in the
density-independent factors could swamp productivity losses from harmful compensa-
tion in the density-dependent factors. I do not show this situation here because to
address it fully would require better information than I have about the relative mag-
nitudes of density-independent and density-dependent mortality rates, and the relative
impact of the maternal effect on these rates. I revisit this subject in the following
chapter.

Finally, I note that in several cases here, the intensity of the maternal effect
depends on the difference oy — o rather than the ratio as/a;—-it seems the ability
to survive the environment is more important than the ability relative to conspecifics.
This result may be useful for the design of empirical studies of maternal effect’s impact

on survival.
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Chapter 3

The Simulation Model

We now have a productivity model that allows us to connect differential lar-
val quality to maternal age. While productivity has inherent ecological interest, age-
dependent maternal effects have attracted attention in the context of over-fished pop-
ulations facing long recovery times. For this reason I will now present a simulation of
the recovery of an overfished population. The population dynamics are age-structured
and the recruitment function is the multivariate Beverton-Holt productivity function
developed in the previous chapter.

This population simulation is a powerful tool for addressing the uncertainty
we have about (1) the magnitude of pre-recruitment survival and mortality rates (2)
the persistence of the maternal effect and (3) the magnitude of the maternal effect. I
calculate how time to recovery depends on each of these unknown variables, and seek

robust patterns.

Wherever possible I have used data to parameterize the simulation. However,
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in the maternal effects productivity model, the base parameters ¢, f and 4 present a
special problem because there are no data to meaningfully inform what these values
should be. Each simulation run takes time, and there are many runs for each combina-
tion of base parameters, so I must find a representative subset of the reasonable values

for cach base parameter. I describe here how I parameterized the model.

3.1 Stock-Recruitment Model

The number of individuals of age a in year ¢ is N(a,t), while the number of
juveniles in year t is n(a,7,t) or simply n,(7) when ¢ is constant. For juveniles, a
indicates their maternal age. Here 7 is the time index for the pre-recruitment period:;

7 = 0 at the time of settlement to the benthic habitat, thus,

n(a,0,t) = ¢(a)Pp(a)W(a)N(a,t) (3.1)

where W is weight at age a (defined below in Equation 3.10), B, is the probability a
fish is mature at age a, and ¢ is the number of juveniles that settle per unit of mature
adult biomass of age a. P, is modeled with a sigmoidal curve

1
T 1+ e-cem(Z(@)-Lso)

P(a) (3.2)

where L is length at age a and is defined in Equation 3.9, half of fish length Lso are

mature and ¢y, is a constant that determines the steepness of the maturity curve.
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Survival through the benthic phase is modeled with the modified Beverton-Holt
function given by Equation 2.14. The model is introduced in Section 2.3. Equation 3.1
serves as the initial condition needed to solve Equation 2.14.

To calculate number of recruits in year ¢, I evaluate the solution of Equation

2.14 at time 7', the time of recruitment, and sum across maternal ages,

N(1,t) = "n(a,T,t) (3.3)

a

3.2 Maternal Effects Model

To model an age-dependent maternal effect, I allow the survival and mortality
rates—¢, p and y—to depend on maternal age. In the case of the pelagic survival rate,
¢, [ use a sigmoidal curve with an inflection point at apsg, the age at which the rate is

half of the maximum possible rate. Thus,

17 ecolaan)

¢>(a-):<z3(1+ %) (3.4)

where Gf; is the base settlement rate and Pg is the maximum proportionate increase above
é due to the maternal effect. Offspring of the youngest mothers have a settlement rate of
approximately ¢3, and offspring of the oldest mothers (a >> apsg) have a settlement rate
of approximately (1 + p¢)<2>. The parameter ¢4 controls the steepness of the transition

from a settlement rate of qb to a settlement rate of (14 p¢)$. When ¢, is large there is a

very sudden transition in settlement when maternal age reaches ajrg, when cy is small
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the transition is gradual. The relationship between ¢ and maternal age is illustrated in
Figure B.5a.
Density-independent mortality in the benthic stage is also modeled with a

sigmoidal curve, except in this case mortality is a declining function of maternal age.

mwzﬂ(l D ) (3.5)

1+ e—cule—ane)

where [i is the base density-independent mortality rate for the benthic stage and Dy
is the minimum proportionate decrease of i due to the maternal effect. Offspring of
the youngest mothers have a density-independent mortality rate of approximately 2 and
offspring of the oldest mothers (a >> ap;g) have a density-independent mortality rate of
approximately (1—p,)i. The parameter ¢, controls the steepness of the transition from
a rate of i to a rate of (1 — p, ). When ¢, is large there is a very sudden transition
in mortality when maternal age reaches ajrg, and when ¢, is small the transition is
gradual. The relationship between p and maternal age is illustrated in Figure B.5b.
Modeling density-dependent mortality in the benthic stage is slightly more
complex than either ¢ or y; density-dependent mortality will depend both on an indi-
vidual’s maternal age and on its competitors’ maternal ages. Thus, « is a square matrix
of dimension @mqz X @maz- I model this in two steps. First I model the intra-class

mortality rates with a sigmoidal curve

B 1+ e—cvla—ani)

o) = (1 Py ) (36)
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where 4 is the base density-dependent mortality rate for the benthic stage and p, is
the minimum proportionate decrease of 4 due to the maternal effect. Offspring of the
youngest mothers have a density-dependent mortality rate of 4 and offspring of the
oldest mothers have a density-dependent mortality rate of (1 —py)4. The parameter ¢,
controls the steepness of the transition from a rate of 4 to a rate of (1 —p,)y. When ¢,
is large there is a very sudden transition in mortality when maternal age reaches axsg,
when ¢, is small the transition is gradual.

Second, I model inter-class density-dependent mortality rates as a function of
the difference between an individual’s maternal age, and their competitor’s maternal
age, a — k

v(a, k) = v(a,a)e"@N (3.7)

Here, v, controls the rate at which the mortality rate changes with respect to the
difference in maternal age between two juveniles: when v, is small it matters very little
if there is a difference in maternal age; when v, is large 7 is very sensitive to differences
in age between conspecifics. The relationship between « and maternal age is illustrated

in Figure B.5¢ for cases where k = 10.

3.3 Adult Population Model

N(a,t) is the number of adults of age a at time ¢. It is calculated as the number

of adults at age a — 1 at time ¢ — 1 less the number that have died due to natural causes
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or fishing; this is written
N(a+1,t+1) = N(a,t)eM@-Fla) (3.8)

where M (a) is the rate of natural mortality experienced by adults of age a and F(a) is
the rate of fishing mortality experienced by adults of age a. Both natural and fishing
mortality are functions of length, and length is a calculated with the von Bertalanffy

growth equation

L(a) = Lo (1 - e_"(a_a’“)) (3.9)

Here L, is the asymptotic length, & is the growth rate, and aq is the theoretical age of
a fish of length zero centimeters. The von Bertalanffy growth function is illustrated in

Figure B.3.

Individual weight is a standard allometry of length
Wi(a) = wiL(a)** (3.10)

where W(a) is weight, and w; and wy are constants. The appropriate values for the
constants can usually be found in the literature, and in the case of rockfish, estimates
for these constants can be found in Rockfishes of Northeast Pacific (Love et al. 2002).
Adults are removed from the population by natural mortality. The rate of
natural mortality, M(a), experienced by an individual of age a is a function of its length.

There is a component to the natural mortality based on the length of the individual, mq,

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and a component that is independent of the individual’s length, mg (Lorenzen 2000),

M(a) = mo + —% (3.11)

This simulation is age-structured, rather than length structured, and therefore natural
mortality is made into a function of age via Equation 3.9. The natural mortality function
is shown as a function of both length and age in Figure B.4.

The simulation has a finite number of age classes. The greatest age class must
accommodate individuals older than the maximum age in the simulation angz, where

Amaz > > QME!

N{amaz:t+ 1) = [N(@maz,t) + N(amag — 1,8)] e~ M(enae)=Fama) (3.12)

Fishing mortality as a function of age is given by

F(a) = FS(L(a)) (3.13)

where F" is the rate of fishing mortality and S is the selectivity function. To emulate
data for nearshore rockfish, this simulated fishery has a double-sided selectivity curve:
very young individuals are not selected by this fishery, and very old individuals are
selected at a reduced rate (Ralston and Dick 2003). The selectivity function is

S(a) 8y Sy — S

= 1_'_e—cy(L(a)—Ly) - 14+ e—-Co(L(a)—LO) (3.14)
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where s, is the maximum selectivity for young fish, ¢, is the steepness of the gain in
selectivity, and Ly is the inflection point of the ascent and the length at which selectivity
is half of s;. The minimum selectivity for old fish is s,, ¢, is the steepness of the descent
in selectivity, and L, is inflection point of the descent and the length at which selectivity
is halfway between s, and s,. In Appendix B.3.5 I describe how the selectivity function
is parameters are chosen based on the stock-assessment and includes an illustration of
the double-sided selectivity function used for the the results presented throughout this

thesis.

3.4 Parameterization

I selected twenty-seven sets of pre-recruitment rates, shown in Table 3.2, eigh-
teen cases of the maternal effect, shown in Table 3.3, and six harvest levels, for a total
of 2,916 parameter combinations. Each set of parameter was run for three values of
o4, and the two nonzero values were iterated ten times. This sums to a total 61,236
attempted simulation runs. In some cases, the simulation failed because the simulated
population fell to zero biomass (i.e., the simulated population went extinet). Simulation
failures occurred more often when there was high environmental variability (Table 3.1).
Failures were well distributed across the parameter space, so that no parameter bias

was introduced. The final data set includes 53,022 measurements of TTR.
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Table 3.1: Numbers of attempted and successful simulation runs.

Runs Runs Success
oy  Attempted Successful  Rate
0 2,916 2,910 99.8%,
1 29,160 28,446 97.6%
2 29,160 21,666 74.3%
Total 61,236 53,022 86.6%

3.4.1 Stock-Recruitment Model

We would like to compare the simulated data to S. melanops data to confirm
that the simulated population is analogous to a natural population. In particular, we
want to choose values for qAb, it and 4 that produce values of recruitment and population
biomass that are comparable to values for a natural population. The most recent stock
assessment of S. melanops provides us estimates of current recruitment, equilibrium
biomass and steepness. In the case of no maternal effect, the stock recruitment model

(Equation 2.14) reduces to a standard Beverton-Holt model so that

asS
— 3.15
1+ 85 (3.15)

where R is the number of recruits, S is the spawning stock biomass and o and 3 are

defined in terms of the base parameters

a=de T g= q&% (1 - e—f‘T) (3.16)
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Here T is the length of juvenile period (see Figure 1.4). In all of the simulation cases
the mortality rates are parameterized so that T' = 100. Here, asymptotic recruitment
is a/B. If we assume that recruitment at equilibrium biomass (Rp) is equal to the
asymptotic recruitment, then

Ry = (3.17)

e
This gives us the means to calculate equilibrium recruitment as a function of the base

parameters in the absence of a maternal effect. If we assume a steady-state age-

distribution, then we can estimate equilibrium biomass to be

Amax

By=Ry Y e (3.18)
a=:1

where a indexes age and Z is the rate of total mortality. We can also calculate steepness
(h), defined as
R(0.2By)

h= EEy (3.19)

In the most recent stock-assessment for Black rockfish, recruitment is estimated at
2,000-4,000 individuals, equilibrinm biomass is estimated around 20,000 metric tons,
steepness is estimated at about 0.65 and natural mortality is about 0.115 yr~! (Ralston
and Dick 2003). In Table A.1 I show calculations of Ry, By and h for these base param-
eters in the case of no maternal effect. In Figure 3.1 I show estimates of recruitment
given  and #.

Table 3.2 shows the range of base parameter values used to create the simulated
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Figure 3.1: Contours give an estimates of asymptotic recruitment as a function of
and 4 in the absence of maternal effects. Recruitment is estimated using Equation
3.17. This is for large spawning stock biomass (when § — oo in Equation 3.15) where
recruitment depends only on i and 4 and is independent of QAS

data shown here. I chose parameter values that spanned the range of appropriate
values. Also, I chose parameters values that produced robust simulated populations.
Parameters values too close to the edge of the parameter space created simulation runs
with populations that would go extinct even in the absence of fishing. This was the
basis of my choice for values of (ﬁ Simulations with ¢3 < 0.5 would not persist under
most circumstance. Simulations with q; > 2 would quickly grow to unrcasonably large

sizes of adult biomass and produce steepness values much larger than appropriate for
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rockfish (see Table A.1).

Table 3.2: All twenty-seven sets of pre-recruit mortality rates used in the simulation

results.

6 p é i 4 o i A
0.5 0.001 5e-7 0.5 0.01 5e-7 0.5 0.03 be-7
1 0.001 5e-7 1 0.01 5e-7 1 0.03 Be-7
0.001 5e-7 2 001 b5e-T 2 0.03 B5e-T
0.5 0.001 1le-6 0.5 001 1leb 0.5 0.03 1le-6
1 0.001 1le-6 1 0.01 1le-6 1 0.03 1le-6
0.001 1le-6 2 0.01 1le-6 2 0.03 1le-6
0.5 0.001 5e-6 0.5 0.01 5e6 0.5 0.03 b5e-6
1 0.001 5e-6 1 0.01 b5e-6 1 0.03 5e-6
0.001 be-6 2  0.01 b5e6 2 0.03 BHe-6

3.4.2 Maternal Effects Model

To address the range of uncertainty in the persistence of the maternal effect I
simulated eighteen versions of a maternal effect. The parameter values for each of these
cases are shown in Table 3.3. These cases include scenarios where there is no maternal
effect (none), scenarios where the maternal effect has dissipated by the time of settlement
(pelagic only), cases where the maternal effect impacts both pre- and post-settlement
processes (pelagic and benthic), and scenarios where the maternal effect impacts only
post-settlement processes (benthic ouly).

For each productivity parameter that can be impacted by a maternal effect,
there is a curvature parameter that controls the steepness of the effect (¢4, cuy and cy).
This parameter can be tuned, but is instead held constant for all of the results shown
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Table 3.3: Parameter values for the eighteen cases of the maternal effect. Case 1 is the
case of no maternal effect. Cases 2-5 the maternal effect is only in the pre-settlement
stage (it only ecffects ¢). Cases 6-14 the maternal effect impacts both pre- and post-
settlement processes. In Cases 6-10 the pre-settlement effect is constant (py = 1) while
the post-settlement effect on the density-dependent parameter (p,) varies. In Cases
11-14 the post-settlement effect is constant (p, = 0.4, py = 0.4, v, = 0.01), while
the pre-settlement effect (py) varies. Cases 15-18 the maternal effect is only in the
density-dependent part of the post-settlement stage (it only effects «).

Case | Effect | ps pp Dy €p cu ¢ vy
1 none 0.0 00 0.0 08 08 0.8 0.00
2 0.5 0.0 00 08 08 08 0.0
3 pelagic | 1.0 0.0 0.0 0.8 0.8 0.8 0.00
4 only 1.5 0.0 0.0 08 08 08 0.00
5 20 0.0 0.0 08 0.8 08 0.00
6 1.0 04 08 08 0.8 0.8 0.01
7 1.0 04 06 08 08 08 0.01
& 1.0 04 04 0.8 08 0.8 0.01
9 1.0 04 0.2 08 08 0.8 0.01
10 pelagic | 1.0 04 0 0.8 08 08 0.01

and
11 benthic | 0.5 04 04 0.8 08 0.8 0.01
12 1.0 04 04 08 0.8 08 0.01
13 1.5 04 04 08 0.8 08 0.01
14 20 04 04 08 08 08 0.01
15 0.0 0.0 08 0.8 08 08 0.00
16 benthic { 0.0 0.0 06 0.8 0.8 08 0.00
17 only 00 0.0 04 08 08 08 0.00
18 00 00 02 08 08 0.8 0.00
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in this thesis (cg = ¢, = ¢y = 0.8). I experimented with varying this parameter, but
found that the qualitative patterns in the results were not strongly impacted by changes
in the curvature. Therefore, I chose to hold the curvature constant at an intermediate
value that approximates the steepness of the observed maternal effect (shown in Figure
1.1).

The parameters that control the magnitude of the maternal effect are Pé» Py
py and vy. The ranges for p, and p, are straightforward to select. They define the
maximum proportion of decrease in mortality rate attainable for the offspring of the
oldest mothers. As proportions, p,, py are bound between zero and one. The cases
listed in Table 3.3 use values for these parameters that are greater than or equal to zero
and less than one.

The parameter pg is more difficult to bound; it is a proportionate increase
in settlement rate. It must be greater than or equal to zero, but in theory it can be
infinitely large. This parameter changes the average productivity of the population,
and thus the maximum appropriate value is roughly related to the maximum value for
é. The ma:c(qugg) should not be much greater than maz(@). In this case, maz(¢) = 2
therefore I selected the max(py) = 2.

There is one last parameter in the maternal effect model, v.,. This parameter
controls the strength of inter-class age differences on the density-dependent interaction
rate (Equation 3.7). In sensitivity analysis, I found that increases in this parameter
behaved qualitatively like increases in p,. Since there was little difference between

these parameters, I chose to minimize variation in this parameter to reduce the number

o4
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of tuning variables. This parameter is set to zero in all but the cases where the maternal
effect impacts both pelagic and benthic processes. In these cases, I set v, to a level that

produced similar quantitative changes as an 0.2 increase of p..

3.4.3 Adult Population Model

The adult population simulation is based on the model species black rockfish
(S. melanops). Many of the important biological parameters for this species are directly
available in the scientific literature (e.g., the von Bertalanffy growth parameters and the
weight allometry). Several other parameters are not directly available, but can be easily
derived from data in the literature (e.g., the length-based and length-independent rates
of natural mortality could be derived from estimates of total average mortality and the
population length distribution). The sources of data-based parameters are summarized

in Table 3.4.

3.4.4 Harvest Rate

Black rockfish is not an overfished species and is moderately productive for
a rockfish. The most recent stock assessment estimates that black rockfish biomass is
at 55% of unfished biomass. The current harvest rate for the Black rockfish fishery is
equivalent to F' = 0.075 (Ralston and Dick 2003).

There are seven species of rockfish in rebuilding plans today. For these species,
the harvest rules range from the equivalent of £ = 0.0082 (for Pacific Ocean Perch, S.

alutus) to F' = 0.049 (for Bocaccio, S. paucispinis) (PFMC 2006).
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Table 3.4: Data based parameter values used in simulation.

Parameter Value Equation Source
Lo 53.25 em
K 0.15 cm/day 3.9 Love et al. 2002
to -2.84 days
w1 0.0043 ¢ ) SN
ws 3 369 3.10 Love et al. 2002

M 0.115 yr~1

o 0.8 3.11 sec Section B.3.2
my 0.03

Sy 1

Cy 0.5

Ly 33 cm 3.14 see Section B.3.5
So 0.3

Co 0.5

L, 45 em

Cm 0.4103 _

Lso 39.53 om 3.2 Love et al. 2002
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In Chapters 4 and 5 I show time to recovery (IT'TR) as a function of harvest
rate (F). I present values of F' that range from 0-0.1. This range includes the harvest
rates in the current rockfish rebuilding plans. It also covers the realistic range for
harvest rates under rebuilding: in most cases the simulated populations do not recover

at F'> 0.08.

3.5 Measuring Time To Recovery

In Figure 3.2 I show a time series of spawning stock biomass from an example
simulation run. In each case, I run the simulation until the population reaches an
equilibrium biomass, By. Then fishing begins and continues until the population reaches
an overfishing threshold at 15% of initial biomass (Bj5). I then allow the population to
rebuild, under various levels of fishing pressure, and measure how long it takes to reach
a rebuilding target at 40% of initial biomass (Byg). Time To Recovery (I'TR) is the
number of years the population takes to recover from Bis to By. In the simulation,
TTR is capped so it is never greater than 100 years.

The threshold targets Bis and Bgg were chosen to reflect common management
reference points. Amendment 1 of the Magnuson-Stevens Act requires that overfished
stocks be rebuilt (PFMC 2006). However, the law gives considerable discretion to the
fishery management councils to define when a stock is “overfished” and when it is “re-
built.” The reference point Byg is a common rebuilding target because it is a proxy for

Bisy, the population biomass at maximum sustainable yield. The overfishing threshold
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Figure 3.2: Example of a time series from the simulation. The simulation starts at
an arbitrary initial condition and runs until it reaches a steady-state, the steady-state
population is harvested at a high level until the population falls below the overfishing
threshold, Bis. Fishing pressure is reduced to recover the population to the rebuilding
target, Bso. The dashed lines show recovery trajectories under various fishing levels.
¢ =2, i=0001,4=5€e—6 py=p,=p, = v, =0,
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is set on a stock by stock basis and the selection usually reflects the stock’s productiv-
ity: more productive stocks can tolerate lower thresholds. The overfishing threshold is
usually between Bjg-Bss; the Pacific Fisheries Management Council uses a rebuilding
threshold of By for rockfish. I chose to use a slightly lower overfishing threshold of
Bi5 because most of the seven west coast rockfish stocks that are currently designated
overfished have biomass estimates well below the B threshold: S. ruberrimus (7%),
S. entomelas (23.6%), S. levis (7%), S. paucispinis (2%), S. pinniger (9.4%), S. alutus

(13%), and S. crameri (14-31%) (PFMC 2006).
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Chapter 4

Time To Recovery in a Static

Environment

I now present the measurements of time to recovery obtained through deter-
ministic runs of the simulation model presented in the previous chapter. In a complex
system, such as this one, it is helpful to limit the amount of uncertainty considered
at any one time. In this chapter, I present outcome distributions with large variance.
However, none of this variance is due to external environmental variability. All of the
variance in outcomes presented here is due to uncertainty in the magnitude of recruit-
ment rates and uncertainty in the magnitude and persistence of the maternal effect. In
the next chapter I will present stochastic outcomes of the simulation and examine how

to interpret the conclusions of this chapter in the context of environmental variabililty.
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4.1 Magnitude of the maternal effect

4.1.1 Averaging across all parameters

The final data set includes 2,910 deterministic measurements of 7T R. To gain
initial understanding of the results I performed a series of linear regressions on TTR. I
show the results of two of these regressions in Table 4.1. Regression Model 1 includes
all of the significant variables in the model, and regression Model 2 includes only the
single most influential variable, the harvest rate. We can see that the harvest rate alone
explains nearly half of the variability in TTR. But we can account for an additional
32% of the variability by including the maternal effect and the pre-recruitment survival
and mortality rates.

In regression Model 1, TT R is negatively correlated with the density-independent
maternal effects py and p,, but it is positively correlated with density-dependent ma-
ternal effect p,. In Figure 4.1 1 show boxplots of time to recovery versus the density-
independent maternal effect in py and the density-dependent maternal effect in p,.
We can see that the linear regression accurately characterizes the relationship between
time to recovery and a maternal effect that impacts the settlement rate; Increasing the
strength of the maternal effect in the pelagic stage leads to faster recovery. The relation-
ship between time to recovery and a maternal effect that impacts the density-dependent
processes is more complex. A small effect is helpful, but a large effect is hurtful.

To approximate effect size, I multiplied the estimated coefficient values shown

in Table 4.1 by the range of parameter values used in the simulation. It appears that
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Table 4.1: Estimated coefficients and diagnostic statistics from two linear regression on
TTR. Model 1 is the best fit linear model and Model 2 is a reduced model that explains
much of the variability in TTR. Also shown is an approximation of the change in TTR
attributable to changes in this parameter; to calculate this I multiplied the estimated
coefficient by the range of the parameter value.

Model 1 Model 2 Approximate Parameter

Parameter coeflicients coefficients ATTR description
intercept 26.8 25.5
F 723.9 723.9 +14-72yrs.  harvest rate
gﬁ -12.5 — 6-25 yrs. settlement rate
i 1,450.0 + 1-43 yrs.  density-indep. juv. mortality
4 79,170.0 + 0-1 yrs.  density-dep. juv. mortality
P -6.7 — 3-13 yrs.  maternal effect in ¢
Dy -22.5 — 3-15yrs.  maternal effect in
Dry 94 + 1-4 yrs. maternal effect in ~
F-statistic 1,354 2,382
p-value <le-15 < le-15
R? 0.77 0.45
AIC 25,047 27,515

there is a similar magnitude of impact when a maternal effect influences the density-
independent processes whether it occurs in the pre- or post-settlement stages. A 40%
decrease in the benthic rate of density-independent mortality has a similar impact on
TTR as a 40% increase in the settlement rate. The impact of a maternal effect in the
density-dependent processes is negative, but has a lower magnitude than the effect on
the density-independent processes. Even a very strong maternal effect tends to have a

smaller impact on TTR than changes in harvest rate.
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Figure 4.1: TTR versus the strength of the maternal effect in the pelagic factors py and
the density-dependent factors p..

4.1.2 A specific case

In Figure 4.2 1 show TTR(F,p¢|¢E,ﬂ,'Ay), time to recovery as a function of
harvest rate and the maternal effect given a specific set of pre-recruitment survival
and mortality rates. In this figure, the maternal effect only impacts the pre-settlement
stage. In this case, we see that the maternal effect py shortens time to recovery, and
the stronger the effect the bigger the improvement in recovery times. We also see that
when the harvest rate is very high, the maternal effect does not improve recovery times,
because in all cases the population fails to recover. But also, when the harvest rate is
very low the maternal effect has little impact. This result occurs because the population
is recovering so quickly that the boost provided by the maternal effect is unimportant.

In Figure 4.3 I show something similar, TTR(F ,p7|<,70, it,%), but here the ma-
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Figure 4.2: Two views of the case where the maternal effect only impacts the pelagic
stage (p, = py = 0). The black dashed line gives the case with no maternal effect. Here,
the base rates are ¢ = 1, jt = 0.001, 4 = 5e — 6.

ternal effect impacts both pre- and post-settlement processes. In this case time to
recovery is usually shortened by the addition of a maternal effect that is impacting both
density-independent and density-dependent processes. However, the stronger the effect
on the density-dependent processes, the less improvement we see in recovery times.
These two figures illustrate the pattern that holds throughout the parameter
set: if the maternal effect only impacts the density-independent processes, then TT R
always improves; but, when the maternal effect influences the density-dependent pro-

cesses, then TT'R generally improves less and may even get worse.
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Figure 4.3: Two views of the case where the maternal effect impacts both the pelagic
and benthic stages (py = 1 and p, = 0.4). The black dashed line gives the case with no
maternal effect. Here, the base rates are ¢ = 1, it = 0.001, ¥ = 5e — 6

4.2 Change in time to recovery

In Figure 4.4 T show a histogram of the change in TTR due to a maternal

effect as a function of the strength of the maternal effect, defined as

ATTR = TTR($, ft. 4, P, Pus ) — TTR(S, it, 4|py = pp = p, = 0) (4.1)

We see that the distribution of ATTR is left skewed. Most cases lead to reductions
in TTR, but a handful of cases do cause an increase in TT'R. These cases arise when
settlement rates are relatively low and p, is high (a strong impact on the density-

dependent factors).
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Figure 4.4: Histogram of ATTR values shows left skew, indicating that a maternal
effect is more likely to accelerate recovery than to decelerate recovery.

In Figure 4.5 I show TTR as a function of the maternal effect. We can see that
there is a clear trend in panel (a): bigger changes in lead to p, the shorter recovery times.
However, the effect in panel (b) is less coherent, and there is no obvious trend. Also,
decreases of TTR tend to be of larger magnitude than increases of TTR. It appears
that increasing the intensity of the maternal effect in v mitigates any improvements we
would otherwise see; this reduced effect causes the negative correlation between TTR
and p, found in Table 4.1.

In a full third of the cascs, |ATTR| is no more than onc year; i.c. the impact

of the maternal effect is trivial. Most of these occur for one of three reasons: the
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Figure 4.5: ATTR is defined in Equation 4.1. Here we show boxplots of ATTR with
respect to the strength of the maternal effect. The edges of the box (called hinges)
occur at the upper and lower quartiles (so that 75% of the data is within the range of
the box hinges), the median is indicated with a black horizontal line, and the whiskers
extend to the maximum and minimum values. A dashed red line zero.

population fails to recover with or without a maternal effect, harvest fraction is very
small, or the settlement rate is high but the benthic mortality is low. This last scenario
is illustrated in Figure 4.6. The basic pattern illustrated in Figures 4.2-4.3 continues

to hold, but the magnitude of the effect is trivial.

4.3 Magnitude of early life survival and mortality rates

It turns out that an important determinant of the impact of the maternal effect
is the relative survival and mortality rates pre- and post-settlement. In Figure 4.7, I

show several outcomes of the stock-recruitment function. I have labeled the four types
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Figure 4.6: Panel (a) shows the case where the maternal effect only impacts the pelagic
stage (py = py = 0) and panel (b) shows the case where the maternal effect impacts
both the pelagic and benthic stages (py = 1 and p, = 0.4). The black dashed line gives
the case with no maternal effect. Here, the base rates are <E) =2, 4=0001,4%=5e~7

of populations according to their relative settlement and benthic mortality rates. The
highest recruitment is from the populations with a high settlement rate followed by low
post-settlement mortality (HL). The lowest recruitment is from the populations with a
low settlement rate followed by high post-settlement mortality (LH). The addition of
a maternal effect in the benthic stage has a substantially different impact on the four

types of populations.
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Figure 4.7: The stock-recruitment function with high and low settlement rates, and
high and low juvenile mortality rates. The labels HL, HH, LL and LH correspond to
the cases shown in Figures 4.8 and 4.9. A high settlement rate is defined as q> =2 and
a low settlement rate is qAb = 0.5. High juvenile mortality is i = 0.01 and ¥ = 5¢ — 6,
and low juvenile mortality is i = 0.001 and 4 = le — 7. The dashed lines show three
versions of a maternal effect in the benthic stage, these are (i) p, = 0.4, p, = 0.4 and
vy =0, (i) p, =0, py = 0.8 and v, = 0, and (iii) p, = 0.4, py, = 0.2 and v, = 0.01.

69

| Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Figure 4.8, I show time to recovery for high and low settlement rates versus

high and low juvenile mortality rates. Just as in Figure 4.7, populations with low
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Figure 4.8: Time to recovery as a function of relative mortality and survival rates.
Here, low settlement is defined as ¢ = 0.5 and high settlement is ¢ = 2. Low juvenile
mortality is i = 0.001,% = 5e — 7 and high juvenile mortality is & = 0.01,% = 5e — 6.

settlement and high post-settlement mortality (LH) are the least productive and recover
the slowest. Populations with a high settlement and low post-settlement mortality (HL)
are the most productive and recover the fastest. The boxplots in Figure 4.8 include all
eighteen cases of the maternal effect. We can compare the recovery times shown in
Figure 4.8 to the change in recovery times shown in Figure 4.9. The maternal effects
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Figure 4.9: Change in time to recovery as a function of relative mortality and survival
rates. Here, low settlement is defined as ¢ = 0.5 and high settlement is ¢ = 2. Low
juvenile mortality is ft = 0.001,4 = 5e — 7 and high juvenile mortality is i = 0.01,45 =
He — 6.

have the largest impact on those same populations that are slowest to recover. The
biggest change in TTR occurs in the least productive populations and the smallest
changes in TTR occurs in the most productive populations. Also, importantly, in the
most productive population ATTR is often positive. The most productive populations
arce the most likely to be negatively impacted by the addition of a maternal effect.

The expression of the maternal effect follows a slightly different pattern in
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Figures 4.9 and 4.7. These outcomes are not directly comparable because the outcomes
shown in Figure 4.9 include all eighteen kinds of maternal effect while the maternal
effects shown in Figure 4.7 only impact the benthic processes. The benthic only maternal
effects shown in Figure 4.7 are most strongly expressed in cases where the benthic
mortality rate is high (HH and LH). When the benthic mortality rate is low (HL and

LL), the benthic only maternal effect has little impact.

4.4 Discussion

I have shown time to recovery as a function of the strength of a hypothetical
maternal effect. I have varied the intensity of the maternal effect and I have varied how
the effect impacts the different life history stages. Despite the large number of scenarios
examined, a few robust patterns consistently emerge. In most cases the presence of
a maternal effect either improves recoverability of an overfished population or has no
impact. Life-history influences the results: the change in TTR depends on whether or
not the early life advantage ultimately leads to improved competitveness in the juvenile
stage. And there is a large set of circumstances where even a very strong maternal effect
has little to no impact on TTR.

The linear regressions shown in Table 4.1 allows us to draw out a key point:
TTR is negatively correlated with a maternal effect in the density-independent factors
¢ and g, but is positively corrclated with the maternal effect in the density-dependent

mortality rate, v. In general, a maternal effect that improves the ability of fish to survive
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the pelagic stage reduces TT R. However, if the maternal effect impacts the ability of
some juveniles to compete at the expense of others, then the maternal effect increases
TTR. This linear analysis is very limited; it only allows us to consider the effect in one
parameter at a time, but these basic observations are held up by closer inspection of
the simulated data.

When the harvest rate is too high, the maternal effect has no impact on TTR
because the population never recovers. This result can be seen in Figure 4.6; there is
no relationship between TT'R and py or p, when F=01. It is also interesting that the
maternal effect has little influence when F' is low. In these cases the population recovers
relatively quickly and benefits little from the old fish advantage.

There is an additional circumstance in which the maternal effect has little
influence: when settlement rates are high and benthic mortality rates are low.

Still, in this simulated population, harvest rate is the overwhelmingly most
important tool for lowering TT'R. This conclusion is reinforced by Table 4.1 where
the F’s effect on TTR is far larger than the effect of the maternal effect parameters.
The maternal effect has a noticeable impact on TT R, but is small compared to harvest

reductions.
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Chapter 5

Time To Recovery in a Variable

Environment

Fisheries biologists have long known that recruitment of marine fishes is highly
variable (Sissenwine 1984). Environmental variability is usually identified as a primary
source of recruitment variability. There are many reasons that survival of young fish
depends on the environment. Some of the most notable include the unpredictable timing
of phytoplankton blooms (the nutrition source for many larval fishes), the intensity and
timing of current regimes that can aid or hamper larval and juvenile migrations and the
impact of water temperature on basal metabolic rates (Bakun 1996).

Rockfish, like most marine animals, have a bipartite early life history comprised
of a pelagic stage followed by a benthic stage. Survival of the pelagic larval stage is
strongly influenced by environmental factors, but characterizing the relationship has

proven to be a challenge: juvenile rockfish are dependent on upwelling fronts for nutrition
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(Bjorkstedt et al. 2002), but excessive upwelling currents can harm pelagic larvae by
carrying them away from suitable habitat (Ainley et al. 1993). Variation in year class
strength (i.e., rankings) can be largely explained by changes in sea surface temperature.
However actual abundances fail to correlate with common climate indices (Ralston and
Howard 1995). Similarly, recruitment from disparate locations are strongly correlated to
each other, suggesting an important role played by large-scale physical factors. However
no predictive physical mechanism is evident (Field and Ralston 2005).

Counsider the example of variability in settlement rates. The best index of
settlement comes from the annual pelagic juvenile rockfish survey conducted by the
Southwest Fisheries Science Center of NOAA-Fisheries. Times series from the cruise
arc shown in Figure 5.1. The pelagic juvenile rockfish survey collects rockfish during the
brief window of time after they have undergone the physiological transition to become a
juvenile (flexion), but before they have settled to the benthic habitat. The survey data
are an index of settlement rather than a measurement of settlement. The observations
are collected at standard stations in the core of the survey area (36.5-38.5 N latitude).
They are standardized to the unit “number of 100 day old fish” and fitted to a generalized
linear model with year, station, and calendar date as main effects only. In some years,
an estimate is not possible due to very sparse positive tows these are set to a value
equal to one-half the minimum positive observation, a decision rule that has been used
in applying these data in stock assessments (Steve Ralston, personal communication).

The first thing to note in Figure 5.1 is the extremely high rate of correlation

between time series. In Figure 5.2, I show a histogram of the pairwise correlation
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Figure 5.1: Standardized log of abundance from the annual pelagic juvenile rockfish
survey, conducted by the SWESC. These data are collected shortly before the transition
from pelagic to benthic habitat, and are an index of the number of juveniles to settle.
The ten time series shown are for Sebastes entomelas, flavidus, goodei, hopkinsi, jordani,
melanops, mystinus, paucispinis, pinniger, and saricola. The triangles mark El Nifio
years.

coefficients of the ten time series. The mean correlation coefficient is 0.76. This high level
of inter-species correlation is a strong argument that external factors drive variability in
this system. External factors could include large scale physical conditions or variation
in predation pressure.

The second notable feature of the time series in Figure 5.1 is the appearance of
serial autocorrelation in the time series. This is immediately promising, because in the

northeast Pacific ocean physical conditions are often driven by the El Nifio Southern
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Figure 5.2: The distribution of correlation coefficients for pairwise comparisons of the
ten time series shown in Figure 5.1. The histogram summarizes 100 coefficients, the
mean correlation is 0.76. The high level of correlation between settlement indices for
ten species is used to argue that survival to settlement is strongly influenced by envi-
ronmental factors.

Oscillation (ENSO). ENSO is a short term climate cycle that varies on the time scale
of 3-7 years. Strong ENSO events are often correlated with poor settlement classes (see
the triangles in Figure 5.1). Therefore, we might expect the serial autocorrelation in
settlement time series to be connected to ENSO.

Physical conditions in the northeast Pacific ocean are also influenced by the
long term climate cycle of the Pacific Decadal Oscillation (PDO). However, the PDO
varies on time scales of 20-50 years. The time series shown in Figure 5.1 are far too
short to detect autocorrelation on the PDO time scale.

To compare the settlement time series with ENSO, we can estimate the scales
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Table 5.1: Coeffcients and variances for best fit AR(p) models, defined in Equation 5.1

Species Y1 P2 o

S. hopkinsi 0.5530 0.7256
S. jordani 0.4504 0.8332
S. mystinus 0.3244 0.9353
S. paucispinis  0.2219 0.3287 0.8703

of autocorrelation in the settlement time series by fitting an autoregressive model, such

as

Xy =1 X1 +aXe 0. 0 X + &

e ~ Norm(0,04)

where X, is the settlement index at time ¢ and 1; is the i-th order correlation coefficient.

Unfortunately when we do this, we find that there is no detectable autocorrelation in

most of the time series. In Table 5.1, I show the correlation coefficients for those

time series that do exhibit serial autocorrelation, and even in these cases the scale of

correlation is only one or two years, not the three to seven years of ENSO.

This presents us with a dillemma. Clearly, recruitment is tied to environmental

variability, but the nature of the relationship is not clear. Fogarty (1993) found that

variability in recruitment is generally well described by a lognormal distribution; this

gives us a default initial model. However, serial autocorrelation has been observed in

long-term population time series in the Northeast Pacific Ocean (Hollowed et al. 2001).
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We know that environmental conditions are important in this system, and we know
that some environmental conditions exhibit serial autocorrelation over annual time-
scales. For the purposes of simulation, is it better to model recruitment variability with
or without serial autocorrelation? And will it matter?

I model environmental variability in two ways: (1) as a lognormal process and
(2) as a lognormal, autocorrelated process where autocorrelation is due to ENSO-like
time scales. 1 do not include long term autocorrelation due to the PDO, although
certainly this variation is significant. I chose to exclude consideration of long term
environmental variation because the time scale of PDO variability (decades) is similar
to the time scale of time to recovery. This makes it difficult to summarize across PDO
conditions. Therefore, all results presented here are to be interpreted as occuring within

a given PDO regime.

5.1 The Climate Model

In the model, environmental noise impacts the rate of settlement, the life stage
most vulnerable to physical conditions. I define a new rate of settlement ®(a,t) that is

a function of time as well as maternal age

B(a,t) = 2()$(a) (5.2)
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Where ¢(a) is the rate of settlement defined in Equation 3.4 and z(¢) is our simulated

climmate index,
z(t) = $of(t) + ¥12(t — 1) + thoz(t — 2) + b3z (t — 3) + ... (5.3)

where £ is a bias corrected lognormally distributed random variable

E(t) = exp (—x(t) + %ai) (5.4)

z ~ Norm(0,04)

I define two versions of the climate index, with and without autocorrelation, these
coefficients are given in Table 5.2. The serially autocorrelated climate index came from
the best fit of an autoregressive model to the SOI (a measure of ENSO) done by Chu
and Katz (1985). They also measured the variability, ¢ = 1.43. However here the
environmental variability, o4, is left as a tunable parameter, assuming values between
zero and two. The settlement time series shown in Figure 5.1 have standard deviations
that range from 1.6 (for S. melanops) to 2.8 (for S. entomelas) (personal communication,
Ralston 2007). However, in the simulation model I found that o4 > 2 caused a very
high failure rate (see Table 3.1). The simulation population parameters are based on S.

melanops biology.
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Table 5.2: Coefficients for simulated climate index, z, defined in Equation 5.3. Index 1
is a lognormally distributed process with no autocorrelation. Index 2 is a lognormally
distributed process with serial autocorrelation. Coefficients for Index 2 come from Chu
and Katz (1985).

o Y1 e 3

Index1 1 0 0 0
Index 2 0.63 0.43 0.16 -0.22

5.2 Comparison of Environmental Indices

In Figure 5.3, I show a comparison between Index 1 and Index 2 for time to
recovery given harvest rate. For a comparison, it is best to include simulation runs
that differ in the form of the climate index, but are otherwise similar. However, we do
not want to examine comparisons of all 2,916 sets of parameters. Instead, I selected
the parameters most sensitive to changes in the settlement rate. Recruitment tracks
the settlement rate most closely when juvenile mortality is low. Therefore I chose low
juvenile mortality rates (4 = 0.001 and 4 = 5e — 7), coupled with a moderately high
value for the settlement rate (¢ = 1), and environmental variability (o4 = 1). High
values of these parameters increase impact of changes to the settlement rate, but the
highest values produce too many failed runs (see Table 3.1). I ran this set of parameters
for all eighteen cases of the maternal effect and iterated each set twenty times.

It appears from Figure 5.3 that Index 2 produces consistenly faster recoveries
than Index 1. We can test the difference in means with a ¢-test and the difference in
variances with an F'-test. In Table 5.3, I present the results of these tests for the averaged

set shown in Figure 5.3; additionally I show a few individual cases of the maternal effect
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Figure 5.3: Comparison of Index 1 and Index 2 given harvest rate. Here, 45 = 1,
it = 0.001, 4 = 5e — 7, 04 = 1, and each parameter combination is iterated twenty
times. Results averaged across all eighteen cases of the maternal effect.

to demonstrate that there is no apparent interaction between the maternal effect and the
index type. We see that there is a statistically significant difference between the means
of the recovery times produced by the two indices. Index 2 does consistently produce
recovery times a few years faster, and, as harvest rates increase, the difference grows
larger. There appears to be no difference in the variance of recovery times produced by

the two indices.
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Table 5.3: Comparison of Index 1 and Index 2 (defined in Table 5.2. I test for the
differences in TTR mean (t-test) and variance (F-test) using two forms of the climate
index z. Here, q; =1, i1 =0.001, ¥ = 5¢ — 7, 04 = 1, and each parameter combination
is iterated twenty times. Some cases of the maternal effect are shown separately: “all”
cases is the average across Cases 1-18, in Case 1 there is no maternal effect, in Case 3
the effect is only in the pelagic stage and in Case 6 the effect is in both the pelagic and
the benthic stages— parameters for the Cases are given in Table 3.3. In the columns for
the p-value, *x represents p < 0.001 and * represents p < 0.05. And 95% C.I. stands for
95% confidence interval.

F Case | t -statistic p-value  95% C.I. F-gtatistic p-value 95% C.L
all 5.96 Hk 0.8 -~1.6 1.14 0.32 09-15

0 1 5.00 *% 1.7-4.1 2.18 0.23 0.6 -6.3
3 3.25 * 0.5 -2.2 5.03 * 1.4 -15.0

6 2.12 * 0.0-2.2 2.34 0.23 0.6-79

all 4.69 %ok 1.2 -2.8 1.31 * 1.0--1.7

0.04 1 5.25 x5k 3.0-7.0 1.15 0.86 0.3 -3.3
' 3 3.21 * 0.7 -3.2 4.55 * 1.2 -136
6 1.50 0.15 — 0.6 -3.3 2.71 0.16 0.7 -9.2

all 4.01 ok 46 -13.4 0.88 0.32 0.7 -1.1

0.08 1 2.12 * 0.1 -36.0 0.93 0.85 03 - 27
) 3 3.24 * 5.6 —25.5 14.7 Kk 3.9 -43.7
6 041 0.69 —10.2 - 15.2 1.14 0.88 03-39
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5.3 Time To Recovery with Environmental Variability

In Table 5.4, I show the results of two linear regressions on TTR, similar to
the regression Models 1 and 2, shown in Table 4.1. Regression Model 3 includes all of
the significant variables in the model, and regression Model 4 includes only the single
most influential variable, the harvest rate. For brevity, I show only the results that
using Index 2. We can see that in the stochastic case, the harvest rate alone accounts
for 38% of the variability, less than the 45% accounted for by the harvest rate in the
deterministic Model 2. Adding the additional variables in Model 3 is consistent with
an additional 31% of the variability, very similar to the deterministic case. However,
the overall best fit Model 3 only explains 69% of the variance, even with the variate
o4 included. In contrast, in the deterministic case Model 1 accounted for 77% of the
variance. Otherwise, the coefficient estimates are fairly similar between Model 1 and
Model 3, in both cases we observe the positive correlation between TT R and the density-
independent parameters pg and p, and the negative correlation between TTR and
the density-dependent parameter p,. Additionally, we estimate that environmental
variability alone adds to TTR approximately 3.4 years per unit of oy.

In Figure 54, I show TTR as a function of harvest rate for each value of
04. We see that populations with environmental variability in the settlement rates

(o4 > 0) recover slower than those with no environmental variability in the settlement

rates (04 = 0). The difference in recovery times is larger under greater fishing pressure.
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Table 5.4: Estimated coefficients and diagnostic statistics from two linear regression on
TTR. Model 3 is the best fit linear model and Model 4 is a reduced model that explains
much of the variability in TTR. Also shown is an approximation of the change in TTR
attributable to changes in this parameter, to calculate this I multiplied the estimated
coefficient by the range of the parameter value.

Model 3 Model 4 Approximate Parameter

Parameter coefficients coefficients ATTR description
intercept 28.1 33.7
F 643.6 643.6 +13-64yrs.  harvest rate
é -12.5 — 6-25 yrs.  settlement rate
7 1,427.0 + 1-43 yrs. density-indep. juv. mortality
A 886,900.0 + 0-5 yrs.  density-dep. juv. mortality
Do -6.7 — 3-13 yrs. maternal effect in ¢
Py -18.7 ~ 3-15yrs.  maternal effect in p
Py 4.6 + 1-4 yrs. maternal effect in ¥
P 3.4 + 3-7 yrs.  environmental variability
F-statistic 15,060 32,350
p-value <le-15 < le-15
R? 0.69 0.38

AlIC 466,773 504,363
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Figure 5.4: Time to recovery as a function of harvest rate, broken down by values of the
environmental variance, o,. This result uses the serially autocorrelated climate index,
Index 2.
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Figure 5.5: Example of recovery trajectories: SSB (spawning stock biomass) as a func-
tion of time spent rebuilding. The deterministic trajectory (o4 = 0) is shown along with
ten stochastic trajectories (04 = 1). The thick red line shows the annual means of the

stochastic trajectories. In all cases, F= 0.04, c;AS =05, o =0.01, 4 = 5e - 6, py = 0.5,
vy =04, py, = 0.4, and v, = 0.01.

The results presented in Table 5.4 and Figure 5.4 show that on average across
a wide range of circumstances there is a positive correlation between the amount of
environmental variability and the time required to recover. To understand this result,
we can examine a single recovery case and compare the deterministic recovery time
series (0 = 0) to the stochastic recovery time series (o = 1). I show this in Figure 5.5.
For the stochastic case, there are ten iterations and I have included the mean of these
ten trajectories. We can see that on average the stochastic trajectories are slower to
recover than the deterministic trajectory. However, there are two stochastic outcomes

that recover more quickly than the deterministic case.
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5.4 Maternal Effects and Environmental Variability

In Figure 5.4 there is an interaction between o, and F'. Populations that are
fished at high levels are more vulnerable to environmental variability. This is because
highly fished population have a lower standing biomass and are thus less productive.
However, fished populations also have truncated age-structure, and to some extent their
loss of productivity is attributable to lost age-structure. Recall that many of the cases
included in these results have age-dependent maternal effects. We can isolate the impact
of the age-dependent maternal effect by considering the interaction between oy and F
in the absence of a maternal effect. In Figure 5.6 I show the same result as Figure 5.4
for only those cases where there is no maternal effect.

The populations with no maternal effect recover more slowly on average than
the populations with a maternal effect. However, the pattern in Figure 5.6 is very
similar to the pattern in Figure 5.4. Populations recover more slowly when there is
environmental variability. Populations fished at high levels are more vulnerable to
environmental variability than populations with little or no fishing.

A comparison of the two outcomes reveals that the interaction between og and
F is more pronounced in the presence of maternal effects. At high fishing levels, there is
little difference between the two cases. But at low fishing levels, the case that includes

maternal effects is more tolerant of environmental variability.
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Figure 5.6: Time to recovery in the absence of a maternal effect as a function of harvest
rate, broken down by values of the environmental variance, 4. This result uses the
serially autocorrelated climate index, Index 2.
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5.5 Discussion

We found that increasing environmental noise decreases rates of recovery. This
statement means that all of the observations made in a deterministic simulation should
be interpreted conservatively with respect to harvest rate—-natural populations subject
to environmental variability are less resilient to fishing pressure than deterministic model
populations.

This result may be counterintuitive because the stochastic process has the same
mean settlement rate as the deterministic process and includes many above average
settlement events, as can be seen in Figure 5.1. The post-settlement stage acts to
dampen variability, and does so in a biased way. Large settlement classes are more
significantly culled more than small settlement classes are favored. The net result is that
a stochastic settlement rate will have a lower mean recruitment rate than a deterministic
settlement rate of the same mean.

We could have predicted this by recalling Jensen’s inequality (Hogg and Craig

1959), which states if f is a concave function and X is a random variable then

E[f(X)] < F(E[X]) (5.5)

Our recruitment function is not truly concave. However nuinerical solutions suggest
that it is concave throughout most of the important parameter space (see Figures 2.4
2.6 for a visual example). Jensen’s inequality does not apply perfectly here. However

it does assure us that it is not surprising to find that the stochastic process has a lower
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mean than the deterministic process.

Neither of the two climate models T use are entirely satisfactory: Index 1
ignores temporal structure in the data that I believe are a factor, on the other hand,
Index 2 is a much cleaner autocorrelation effect than is actually observed. Furthermore,
the two indices produce different results. The differences are usually only a few years,
but when harvest rates are high, the exact same population parameters can yield more
than twelve years difference in average recovery time.

In Figure 5.3 we are presented with an interaction between harvest rate and
the form of climate influence, the difference in mean TTR is larger when harvest rate
is high. When £ > 0.08, the difference in means is strongly influenced by failure to
recover. Non-recovery drives the largest differences in mean.

The two indices produce the same number of good years and bad years. Using
Index 2 those good years tend to come in clumps, as do the bad years, whereas using
Index 1 the good years and bad years are thoroughly interspersed. This fact suggests
that clumps of good years are more helpful for speeding recovery than clumps of bad
yvears are hurtful.

Mature biomass grows over the course of the recovery period. Generally, cach
year the population produces more larvae than the previous year. Also, with each ad-
vancing year, the proportion of settlers culled by density-dependent processes grows.
Early in the time series, a string of good ycars would maximize production from pop-
ulations with severely compromised reproductive capacity, but facing little density-

dependent pressure. Later in the time series, the population produces large recruit
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classes nearly regardless of climate, because larval production is so high. Thus, a string
of good years early on can give a larger boost to recovery than the same number of good
vears spread evenly throughout the time series.

Just as often as a string of good years, the early years of the recovery period
will bring a string of bad years. Compromised reproductive potential coupled with bad
conditions leads to recruitment failures, while adult biomass continues to build. The
results presented here suggest that the boost provided from a string of bad years is more
helpful than the harm done by a string of recruitment failures.

Finally, an age-dependent maternal effect buffers populations against environ-
mental variability. However, populations fished at high levels lose this buffer when they
lose the older age classes of mothers. Highly fished populations with a maternal effect

behave much like populations without a maternal effect.
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Chapter 6

Conclusion

We would like to know whether age-dependent maternal effects should be a
consideration when rebuilding overfished populations. We have several uncertainties

that inhibit our ability to predict the population consequences of the effect:

1. Persistence of the maternal effect The population consequences of an age-
dependent maternal effect depend a great deal on the persistence of the effect. Our
initial evidence that persistence is important came in Chapter 2, where we considered
versions of the maternal effect that influence one parameter at a time. Each of the cases
was distinct.

More thorough investigations in Chapter 3 uncovered three types of outcomes
for the age-dependent effect. The first type of outcome is the case where the maternal
cffect observed in a laboratory fails to translate to occan conditions, or its influence

dissipates quickly. In either case, the effect has little impact on the quantity or quality
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of individuals to settle, and there are no population consequences of the effect.

The second type of outcome is the “pelagic only” effect. Here, the maternal
effect is a significant aid to larvae and substantially improves their survival of the long
pelagic period. However, the additional aid has ended by the time of settlement. In
this case, if one were to examine the cohort of settlers, there would be no relationship
between maternal age and individual quality.

In this case, an older population produces larger settlement classes than a
younger population of the same mature biomass. In many cases, the older population
will be much more productive than the younger population. Here, any management
action that increases the number of older mothers will improve population productivity
and recoverability.

The third type of outcome is the “pelagic and benthic” effect. Here, the
maternal effect interacts with density-dependent processes. In this case, a relationship
between maternal age and individual quality exists within a cohort of settlers. The
most likely relationship will be juveniles from older mothers being larger than others.
Larger juveniles are better at avoiding predators (either directly or by interference
competition for shelter space). However, predation is density-cued. The presence of
these juveniles will continue to attract predators to the region, while their superior
ability to avoid predators causes this additional predation pressure to be displaced onto
less able conspecifics.

In this case, the maternal effect may or may not have a positive impact on

settlement rates and the ability of individuals to survive adverse physical condition.
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Primarily, the maternal effect improves the success of a subpopulation, and thereby
improves overall recruitment success. However, the displacement of density-dependent
mortality onto less able individuals mitigates the positive impacts. If the displacement
is large enough, or if population density is sufficiently high, the negative impacts can
outweigh the positive impacts.

Here, there remains strong potential to improve population productivity and
recoverability by increasing the mean age of the reproductive population. However,
more careful consideration must be given to the details. For example, marine reserves
have been suggested as a tool to raise the mean age of a population. But the older
subpopulation within a reserve is also more densely distributed. It is not clear whether
this increased density causes higher density-dependent pressures on juveniles, but it is

a factor to be considered before implementing marine reserves.

2. Magnitude of maternal effect advantage We examined a large range of mag-
nitudes of the maternal effect and found the patterns to be intuitive. In Table 5.4 we
see that the addition of a maternal effect in the density-independent processes (ps and
pyu) improves recovery time 3-15 years on average. The maternal effect in the density-
dependent processes (p-) may have a negative impact on average, but the magnitude of
the change is smaller than the advantages above, only 1-4 years change on average.
When we considered an individual example, Figures 4.2 and 4.3, we found that
the stronger the effect, the larger the change in recovery time. When we summarized

across many cases, Figure 4.5, the pattern was maintained, although barely so in panel
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(b).

We found that the expression of the maternal effect depends significantly on
the ecological context in which it occurs. The context appears to be more significant
than the magnitude of the effect itself. In Figure 4.5(b) the range of contexts are so
important they nearly destroy our ability to detect the signal of the effect’s magnitude
at all.

For example, in Figure 4.3(b) we see that when harvest is high (F = 0.08) a
change in the maternal effect magnitude from a small effect to a moderate effect (P~
changes from 0.2 to 0.4) leads to a twelve year difference in recovery time. Whereas in
the same figure, when harvest is low (F' = 0.02) the same change in the maternal effect
causes almost no change in recovery time. We saw something similar in Figure 4.7. The
same maternal effect applied to four different sets of early life survival rates led to very

different changes in recruitment.

3. Magnitude of early life survival rates I do not show any figures with these
rates as the independent variables. Instead I summarize results for all twenty-seven sets
of rates. There is an effect of the magnitude of these rates on recovery times. This effect
is summarized in Tables 4.1 and 5.4. We find that the important patterns are robust to
magnitudes of the basic rates.

Our key concern is not the magnitudes of the rates themselves, but rather their
relative magnitudes. A system with a high settlement rate followed by a low juvenile

mortality rate (HL) is ecologically distinct from a system with a low settlement rate

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and a high juvenile mortality rate (LH). The HL population is very productive, but the
addition of a maternal effect either has no impact at all or has a negative impact on
recovery time. The LH population is less productive, but the addition of a maternal

effect can have a very large and positive impact on recovery.

4. Functional form of density-dependence In Chapter 2 we saw that the func-
tional form of the density-dependence matters primarily when juvenile density is very
high. Our uncertainty about the functional form of density-dependence, coupled with
our uncertainty about juvenile mortality rates and maternal effects, leaves us with fairly
poor ability to predict the recruitment that results from a large settlement class. We
can see an example of this in Figure 4.7. The high settlement rate produces a much
wider range of possible recruitment outcomes than the lower settlement rate.

Large settlement classes occur because we have (1) high reproductive biomass,
(2) a high per-mother settlement rate, (3) a maternal effect that impacts the settlement
rate and a maternal population sufficiently old to express it, or (4) an exceptionally good
set of climate conditions leading to exceptionally high survival of the pelagic stage. In
short, we require good production, good success and/or good luck.

The years that have these positive factors in place are not our greatest source of
concern. Managers should avoid relying on large settlement classes to support high har-
vest rates. We should recognize our decrcased predictive ability when juvenile densities

are high and respond with conservative harvest levels.
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5. Environmental variability Natural populations contend with tremendous envi-
ronmental variability and this lowers their capacity to cope with fishing pressure. The
addition of a maternal effect may buffer populations to the environment, but even pop-
ulations with a maternal effect will not exhibit this buffering if they are fished at high
levels. An age-dependent maternal effect may create more productive populations, but
managers should be extremely hesitant to allocate the higher productivity for harvest.
It is important to set harvest rates conservatively.

In general, quality guidance for management requires more information. We
could greatly improve our predictive ability with empirical study and I suggest two
areas of study that I would prioritize to improve our understanding of the population
consequences of age-dependent maternal effects.

First, we should scek evidence for an age-dependent maternal effect in the set-
tlement cohort. For example, in black rockfish timing of settleinent appears to correlate
with timing of parturition (i.e., the first to be relcased are the first to scttle) (Miller
and Shanks 2004). Also, older mother’s tend to parturate earlier in the season (Bobko
and Berkeley 2004). If we observe a trend in individual quality with respect to timing
of settlement- - for example the earlier settlers tend to be larger—it would be suggestive
of an age-dependent maternal effect that persists to the benthic stage.

Second, a great deal of predictive ability is lost because of our limited ability
to quantify juvenile mortality. We require better measurements of the magnitude of
juvenile mortality (i.e., daily measurements of juvenile survival) such as those collected

by Johnson (2006 ab). We would also benefit from better characterization of the preda-
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tion pressure faced by juvenile rockfish, such as the study by Hobson et al. (2001) that
found opportunistic and density-cued predation by blue rockfish, S. mystinus.

The results presented in this thesis suggest that past fishing may have had a
greater impact than previously believed, because changes in age-structure have reduced
the recoverability of populations with age-dependent maternal effects. The failure to
predict the consequences of lost age-structure have had very negative consequences for
rockfish populations. I have not offered a specific prescription for incorporating age-
dependent maternal effects into stock assessments. However, I believe the qualitative
understanding gained by this analysis does offer helpful guidance for when to be con-

cerned about age-structure and an additional argument for conservative harvest rates.
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Appendix A

Productivity Parameters

Table A.1: Calculations of Ry, By and h assuming Z =

0.115 y»~! and no maternal effect.

6 p ¥ a(é,i1) B(¢inA) Role,B) Bo(Ro,Z) h(a,B,Bo)
0.5 0.001 5.0E-07 0.45 2.38E-05 19017 155879 0.54
0.5 0.001 1.0E-06 0.45 4.76E-05 9508 77939 0.54
0.5 0.001 5.0E-06 0.45 2.38E-04 1902 15588 0.54
0.5 0.01 5.0E-07 0.18 1.58E-05 11640 95409 0.39
0.5 0.01 1.0E-06 0.18 3.16E-05 5820 47704 0.39
0.5 0.01 5.0E-06 0.18 1.58E-04 1164 9541 0.39
0.5 0.03 5.0E-07 0.02 7.92E-06 3144 25769 0.23
0.5 0.03 1.0E-06 0.02 1.58E-05 1572 12885 0.23
0.5 0.03 5.0E-06 0.02 7.92E-05 314 2577 0.23
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Table A.1: Calculations of Ry, By and h assuming Z =

0.115 yr~! and no maternal effect.

é i 5 a(d,p) B(d.44) Rola.8) Bo(Ro,Z) h(a,B, Bo)
1 0001 50E-07 090 476E-05 19017 155879 0.68
1 0001 1.0B-06 090 9.52E-05 9508 77939 0.68
1 0001 50E-06 090 4.76E-04 1902 15588 0.68
1 001 50B-07 037 3.16E-05 11640 95409 0.50
1 001 1.0E06 037 6.32E-05 5820 47704 0.50
1 00l 50BE-06 037 3.16E-04 1164 9541 0.50
1 003 50B-07 005 1.58E-05 3144 25769 0.26
1 003 10E-06 005 3.17E-05 1572 12885 0.26
1 003 50B06 005 1.58E-04 314 2577 0.26
2 0.001 50E-07  1.81 9.52B-05 19017 155879 0.80
2 0001 1.0E-06 181 1.90E-04 9508 77939 0.80
2 0001 50E-06 181 9.52E-04 1902 15588 0.80
2 001 50B07 074 6.32E05 11640 95400 0.64
2 001 1.0E-06 074 1.26E-04 5820 47704 0.64
2 0.0l 50E-06 074 6.32E-04 1164 9541 0.64
2003 50E07 010 3.17E-05 3144 25769 0.31
2 003 10E06 010 6.33E-05 1572 12885 0.31
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Table A.1: Calculations of Ry, By and h assuming Z =

0.115 yr~! and no maternal effect.

¢ 7 4 alg,p) B(,i.7) Ro(e,8) Bo(Ro,Z) hle, B, By)
2 0.03 5.0E-06 0.10 3.17E-04 314 2577 0.31
5 0.001 5.0E-07 4.52 2.38E-04 19017 155879 0.90
5 0.001 1.0E-06 4.52  4.76E-04 9508 77939 0.90
5 0.001 5.0E-06 452 2.38E-03 1902 15588 0.90
5 0.01 5.0E-07 1.84 1.58E-04 11640 95409 0.80
5 0.01 1.0E-06 1.84 3.16E-04 5H&20 47704 0.80
5 0.01 5.0E-06 1.84 1.58E-03 1164 9541 0.80
5 0.03 5.0E-07 0.25  7.92E-05 3144 25769 0.43
5% 0.03 1.0E-06 0.25 1.58E-04 1572 12885 0.43
5 0.03 5.0E-06 0.25 7.92E-04 314 2077 0.43
10 0.001 5.0E-07 9.05 4.76E-04 19017 155879 0.95
10 0.001 1.0E-06 9.05 9.52E-04 9508 77939 0.95
10 0.001 5.0E-06 9.05 4.76E-03 1902 15588 0.95
10 0.01 5.0E-07 3.68 3.16E-04 11640 95409 0.89
10 0.01 1.0B-06 3.68 6.32E-04 5820 47704 0.89
10 0.01 5.0E-06 3.68  3.16E-03 1164 9541 0.89
10 0.03 5.0E-07 0.50 1.58E-04 3144 25769 0.56
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Table A.1: Calculations of Ry, By and h assuming Z =

0.115 yr~! and no maternal effect.

¢ fi 5 (b, ) B(d, %) Rola,B8) Bo(Ro,Z) h(e, B, Bg)

10 0.03 1.0E-06 0.50 3.17TE-04 1572 12885 0.56

10 0.03 5.0E-06 0.50 1.58E-03 314 2577 0.56
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Appendix B

Methods

This appendix contains the methods of the thesis at a level of detail that should
allow an interested person to reproduce the results exactly. Much of the document is
devoted to explaining the R code used to generate the results (R Development Core

Team 2005). Throughout the document R code is presented in boxes such as

Box 0.0a filename.R

filename = function(parameters){

Rfunction(parameters)

}

The box title gives the file name. In many cases, each R file is divided into several

boxes, and each box is accompanied by an explanation of the purpose of this section of
code. In many cases, the code is presented with relevant equations.
I begin by describing the basic simulation model used for calculating time to

recovery (see Chapter 3). Next, I present an example code for processing the output of
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many runs of the simulation to generate a single, useful matrix of simulated data. I then
show an example of a plotting code. Finally, I describe called functions that support

the simulation. See Figure 1.6 for a schematic of the computational approach.

B.1 The Simulation Model

Objective: I describe how to input the parameter list and output age-structured

population data along with soine calculations.

B.1.1 Header

Asin all R functions, the function name and the file name must be the same. 1
pass a list of parameters to the the function. The elements of this list are given in Table
B.1. The first task of the simulation is to record the start time so that later we can
calculate how long the run took. We also need to generate a unique name for the output
file. 1 do this by using the start time combined with the basic parameter values. The
start time is a sufficiently unique name if the runs are only performed on one machine
at a time. However, if one simultaneously runs simulations on multiple computers that
save to the same directory, it is possible for runs on different machines to have the same
start time. To prevent overwriting of data when this happens, I used a combination of
the start time and parameter values for the run name. This produces run names that
are not intuitive, but are unique. T found it to be unimportant that the file names were
not intuitive.

We set the working directory so that output files will be saved to the cor-
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Table B.1: Elements of the list of input parameters for Simulation function

Parameter R Name Equation Brief Description R Class
F harvest.fraction 3.13 harvest rate vector
Cmax a.max 3.12 maximum age numeric

1) phi.hat 3.4 settlement rate nunieric
i mu.hat 3.5 d.i. juv. mortality rate numeric
A gamma.hat 3.6 d.d. juv. mortality rate numeric

nueric
Do p-phi 3.4 numeric
Pu p-mu 3.5 numeric
Dy p.gamma, 3.6 numeric
Cp c.phi 3.4 maternal effects model numeric
Cu c.mu 3.5 numeric
Cy ¢.gamma, 3.6 numeric
Uy v.gamima 3.6 numeric
aME a.ME 3.4 numeric
T j.days 2.8 length of juvenile period vector
Ah h B.7 step size of numerical solution numeric
o sigma.p 5.5 environmental variability numeric
v rf B.2 proportion in reserve numeric

rect place. And we source a script (simulation_environment.R) that loads all of the

subroutines needed to complete the simulation. These are described in the Section B.3.
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Box 1.1a Simulation.R

Simulation = function(parms){
start.time = Sys.time()
runname = format(Sys.time(),“%b%d_%H-%M") # create a unique run name
runname = paste(runname, as.character(parms$phi.hat*10),
as.character(parms$mu.hat*1000), as.character(parms$p.phi*100),
as.character(parms$p.mu*100), as.character(parms$p.gamma*100), sep="*“")
setwd(“~ /Simulation ”)

source( “simulation_environment.R”)

B.1.2 Parameters

Here I list those parameters not included in the input list of parameters. These
are either what I consider to be constant features of the population, or parameters that
control the structure of the simulation. I set a maximum number of iterations (or years)

for the burn in, the fishing down period and the rebuilding period.
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Box 1.2a Simulation.R (cont.)
# Time #
age = c(l:parms$a.max)
burn.max = 350
hard.fish.max = 400
rebuild.max = 100

t.max = burn.max + hard.fish.max + rebuild.max

Box 1.2b Simulation.R (cont.)

# Length #
L.inf = 53.25
k=0.15
£.0 = -2.84
L = VBFUN(L.inf k,t.0,age)
# Weight #
w.0 = 0.0043
w.l = 3.362 # taken from RF book in grams
W=w0*L * wl

W = W*le-6 # convert to mtons
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Individual weight is a standard allometry of length

Wi(a) = wi1L(a)*? (B.1)

where L(a) is length at age a, W{(a) is weight at age a, and w; and wsy are constants.
The appropriate values for the constants can be found in the literature. In this case,
estimates for these constants are found in Rockfishes of Northeast Pacific (Love et al.
2002).

The remaining functions are described in the section Called Functions.

Box 1.2¢ Simulation.R (cont.)

# Natural Mortality (adults) #

m.0 = 0.8

m.1l = 0.03

M = NatMFUN(m.0,m.1,L)
# Maturity #

Length. fifty.mat = 39.53

curve.mnat = 0.4103

P.m = maturityFUN(Length.fifty.mat, curve.mat, L)
#+4 Pelagic survival ##

phi = phiFUN(parms$phi.hat, parms$p.phi, parms$a.ME, parms$c.phi, age)

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Box 1.2d Simulation.R (cont.)

#+# Fishery ##
F.hard = max(0.1,max(parms$harvest.fraction))
f.max = length(parmsS$harvest.fraction)
selectivity = selectivityFUN(1,0.5,33,0.3,0.5,45,L)
rf = parms$rf
harvest.fraction = parms$harvest.fraction

a.max = parms$a.max

B.1.3 Initial Conditions

To initiate the simulation, I create several matrixes for storing calculations. I
choose initial values for several. T set an initial value for the iteration counter “hard.fish,”

and for the variable “recruits.”
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Box 1.3a Simulation.R (cont.)

burnin.A = matrix(0,t.max,a.max)

burnin.B = matrix(0,t.max,a.max)

burnin.A[1,] = 1000¥%(1-parms$rf)*exp(-0.01*age)
burnin.B[1,] = 1000*parms$rf*exp(-0.01*age)
out.A = rep(0,(a.max+3))

out.B = out.A

rebuild.times = rep(999,f.max)

hard.fish = 0

recruits = 1000

B.1.4 Burn In

There are two populations in the simulation, A and B. Population B has the
potential to have different fishing mortality from population A. This functionality is
not used in the thesis. In all cases shown here, fishing mortality for population B is
set to zero during rebuilding so that population B is a protected population. Harvest
rate is set to zero for the duration of the burn-in. This allows the simulation to find a

steady-state for population biomass in the absence of fishing.
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Box 1.4a Simulation.R (cont.)

print(“ begin burn”)
for(t in 2:burn.max){
F = 0 * selectivity

P = 0 * selectivity

Figure B.1 illustrates the mixing of the populations. The juvenile stage includes density-
dependent mortality. The two pools of juveniles are mixed so that all individuals in
both populations experiences the same population density. The juveniles then settle to
population A at the rate (1 —v) and to population B at the rate v. This is a very simple
way to model a marine reserve.

(1 —-v)n(T,t) if pop. A
N(1,t) = (B.2)

vn(T,t) if pop. B

where n(T,t) is the number of recruits in year t. We also have the option of making
the rate of settlement a random variable. We set the environmental variance 0y in the

input parameter list. When o = 0, the model is deterministic, but when o4 > 0

& ~ lognormal(g, 734) (B.3)

N(a,t) is the number of adults of age a at time ¢, it is calculated as the number of

adults at age @ — 1 at time t — 1 reduced by the fraction that have died due to natural
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Population
B

larvae
larvae

Figure B.1: In the model, the adult population is divided into two sub-populations;
this functionality is not used in the thesis. Population B is a harvest refuge, or marine
reserve population. The two adult populations contribute to the same pool of juveniles.
Because the juveniles are pooled, the rate of density-dependent mortality depends on
the combined density of both populations.
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causes or fishing; this is written

N(a+1,t-1) = N(a,t)e”M@~Fla) (B.4)

where M (a) is the rate of natural mortality experienced by adults of age a, and F(a)
the rate of fishing mortality experienced by adults of age a. Both natural and fishing
mortality are functions of length, and length is a calculated with the von Bertalanffy
growth equation (Equation 3.9).

The simulation has a finite number of age classes; therefore, the greatest age
class must accommodate individuals older than the maximum age in the simulation

Gmazs Where amar >> app. The number at @y, 1s time-stopped as

N(amaz:t + 1) = [N(amaz, t) + N(amaz — 1,t)] e M (@mas)=Famas) (B.5)

Box 1.4b Simulation.R (cont.)

# set variability in settlement for this year

phi.t = phi * P.m * exp(rnorm(1,0,parms$sigma.p) - 0.5*parms$sigma.p ~ 2)

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Box 1.4c Simulation.R (cont.)

#+# Population A ##
burnin.Aft,1] = (1-rf)*recruits
burnin.Aft,2:(a.max-1)] = burnin.At-1,1:(a.max-2)]*exp(-M[1:(a.max-2)]
-F[1:(a.max-2)])

burnin.Aft,a.max] = burnin.A[(t-1),(a.max-1)] * exp(-M[a.max-1]

-Fla.max-1]) + burnin.A[(t-1),a.max] * exp(-M[a.max]-F[a.max])

settlers.A = phi.t* burnin.Alt,]

#+# Population B ##

burnin.B[t,1] = rf*recruits

burnin.B[t,2:(a.max-1)] = burnin.B[t-1,1:(a.max-2)|*exp(-M[1:(a.max-2)]

-P[l:(a.max-2)])

burnin.B[t,a.max]| = burnin.B[(t-1),(a.max-1)] * exp(-M[a.max-1]

-Pla.max-1]) + burnin.B[(t-1),a.max] * exp(-M[a.max|-P[a.max])

settlers.B = phi.t* burnin.B[t,]

recruits = abmPECEFUN((settlers.A + settlers.B), parms)$recruits

Some sets of parameters reach a steady-state quickly, and others slowly. We must allow
for a long burn-in to accommodate the slow populations. To save time, we end the
burn-in as soon as possible. In every iteration we test for a steady-state, defined as less
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than 0.1% change in total population biomass for at least ten consecutive iterations.
The burn-in ends as soon as a steady-state is found.

We record the number of iterations (years) in the burn-in. Biomass at the
steady-state is also called equilibrium biomass, Byg. Once we have equilibrium biomass,
we calculate the overfishing threshold, fifteen percent of initial biomass, Bis, and the
rebuilding target, forty percent of initial biomass, By. To conclude, I print a message

to screen stating the end of the burn-in.

Box 1.4d Simulation.R (cont.)

H#4 Tests #+#

N.test = rowSums(burnin.A + burnin.B)
if(N.test[t]<10) break

if(t>10) local.mean = mean(N.test[(t-10):t]) else next
test = abs(N.test[t]-local.mean)/local.mean

if(test < 0.001) break

if(t > burn.max) break

} ## end burn.in (first part of t loop)

burn =t
B.15 = 0.15*sum((burnin.A[burn,] + burnin.B[burn,])¥*W)
B.40 = 0.4*sum((burnin.A[burn,] 4+ burnin.B[burn,])*W)

print(paste(“begin hard fishing, t = 7, as.character(t)))
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B.1.5 Fishing Down

For this portion of the simulation, we fish the population from equilibrium
biomass down to the overfishing threshold, from By to Bis. We set fishing of both
populations A and B to the same high level. Fishing mortality as a function of age is
given by

F(a) = FS(L(a)) (B.6)

where F is the rate of fishing mortality and S is the selectivity function (see Eq. 77).

Box 1.5a Simulation.R (cont.)

F = F.hard * selectivity
P = F.hard * selectivity

for(t in (burn+1):t.max){

At this time we repeat exactly the code shown in Box 1.4b.

We calculate the population biomass and stop once it falls below B1s. However,
the population could equilibrate and fail to reach the overfished threshold. To avoid
this outcome, we test for a steady-state in the same was as before, and look for less
than 0.1% change in population biomass for ten consecutive iterations. If we find a
steady-state before reaching Bys, we increase the fishing pressure by 10%.

We record the number of iterations in the fishing down period, and we print

to screen a message indicating the end of this stage.
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Box 1.5b Simulation.R (cont.)

# Tests #
B.test = sum((burnin.A[t,]-++burnin.B[t,])*W)
if(B.test <= 0) break
if(B.test <= B.15) break
hard.fish = hard.fish + 1 # count how long we have been fishing hard
if(hard.fish > hard.fish.max) break
N.test = rowSums(burnin.A + burnin.B)
if(t < (burn+10)) next
local.mean = mean(N.test[(t-10):t])
test = abs(N.test[t]-local.mean)/local.mean
if(test < 0.01) F = F*1.1
} # end hard fishing part of t loop

fish.burn =t

print(paste( “begin rebuild, t = 7, as.character(t)))

B.1.6 Rebuilding

Now. we rebuild the population from the overfishing threshold to the rebuilding
target, from Bis to Bag. We do this for several harvest rates, specified in the input list
of parameters. For each element of harvest.fraction, we set the harvest level and create

a new matrix.
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Box 1.6a Simulation.R (cont.)

for(f in 1:f.max){
N.A = matrix(0,t.max,a.max)
N.B = matrix(0,t.max,a.max)
N.A[l:fish.burn,] = burnin.A[1:fish.burn,]
N.B[1l:fish.burn,] = burnin.B|1:fish.burn,]
for(t in (fish.burn+1):t.max){
F = harvest.fraction[f] * selectivity

P = 0 * selectivity

The population dynamics shown in Box 1.6¢ are identical to the code shown in Box

1.4b, except now we are filling different matrices.

Box 1.6b Simulation.R (cont.)

# set variability in settlement for this year

phi.t = phi * P.m * exp(rnorm(1,0,parms$sigma.p)

- 0.5%parms$sigma.p ~ 2)

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Box 1.6c  Simulation.R (cont.)

#7# Population A ##
N.A[t,1] = (1-rf)*recruits
N.A[t,2:(a.max-1)] = N.A[t-1,1:(a.max-2)]*
exp(-M[1:(a.max-2)]-F[1:(a.max-2)])

N.A[t,a.max] = N.A[(t-1),(a.max-1)] *

exp(-M[a.max-1]-Fla.max-1]) + N.A[(t-1),a.mmax] *
exp(-M[a.max]-F[a.max])
settlers. A = phi.t*N.A[t,]

#+# Population B #+#
N.B[t,1] = rf*recruits

N.B[t,2:(a.max-1)] = N.B[t-1,1:(a.max-2)]*

exp(-M[1:(a.max-2)]-P[1:(a.max-2)])

N.B[t,a.max] = N.B[(t-1),(a.max-1)] *

exp(-M[a.max-1]-P[a.max-1]) + N.B[(t-1),a.max] *

exp(-M[a.max]-P[a.max])

settlers.B = phi.t*N.BJt,]

recruits = abmPECEFUN((settlers. A + scttlers.B), parms)$recruits
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Now we test to see if the population has reached Byy. Once it has reached By, we stop

the rebuilding and record how long the rebuild took.

Box 1.6d Simulation.R (cont.)

#7# Tests ##
B.test = sum((N.A[t,]+N.B[t,))*W)
if(B.test < 10) break
if(B.test >= B.40) break
if((t-fish.burn) > rebuild.max) break
} ## end rebuilding part of t loop)

rebuild.times[f] = t-fish.burn

B.1.7 Output

Before we move on to the next harvest level, we perform some calculations
to include in the output file. We calculate total biomass and spawning stock biomass
(SSB). We build two matrices with these time series, and we append the current
rebuilding harvest rate to each row of data. We append these matrices to the similar

matrices calculated for previous harvest levels. Now we move to the next harvest level.
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Box 1.7a Simulation.R (cont.)

biomass.A = rowSums(t(W*t(N.A)))

biomass.B = rowSums(t{W*t(N.B)))

SSB.A = rowSums(t(W*P.m*t(N.A)))

SSB.B = rowSums(t(W*P.m*t(N.B)))

harvest.rate = rep(harvest.fraction[f],t)

tmp.A = cbind(harvest.rate,biomass. A[1:t],SSB.A[1:¢],N.A[1:t,])
tmp.B = cbind(harvest.rate,biomass.B[1:t],SSB.B[1:t],N.B[1:t,])
out.A = rbind(out.A,tmp.A)

out.B = rbind(out.B,tmp.B)

print(paste( “end rebuild, f = 7, as.character(f),“, t = 7 as.character(t)))

} # end f loop

The objects named “out.A” and “out.B” include numbers of individuals by age and
year, including all of the rebuilding trajectories. We trim the empty first rows. Then,
we create a list object with the elements out.A, out.B, the input list of parameters. This
object is a vector with rebuilding times and the number of iterations in the burn-in and
in the fishing down period. We save this object to a file with name *out.Rdata, where
* is the run name defined at the start.

Finally, we calculate the end time and print to screen the duration of simula-

tion. The function outputs the text object “runname” and ends.
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Box 1.7b  Simulation.R (cont.)

## output file ##
end = dim(out.A)[1]
out.A = out.A[2:end,]

out.B = out.B[2:end,)

out = list(out.A=out.A,out.B=out.B,parms=parms,
rebuild.times=rebuild.times,burn=burn, fish.burn=fish.burn)

save(out,file=paste( “Simulationout/” ,runname, “out.Rdata” sep="“"))

#4 end #H#

end.time = Sys.time()
print(start.time - end.time)
runnare

} # end function

I store the output “runname” for several runs of the simulation, as shown in Box 1.7c.
In this way, I create a list of run names to be used by a processing script for extracting

data from many simulation output files.
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Box 1.7¢ example run

for(i in l:i.max){
run.name.list|[i| = Simulation(parameters([i]])

} # end i loop

B.2 Handling the Data

B.2.1 Processing

Objective: I describe how to input a list of individual run names output from Simu-
lation.R, extract data from each output file, and create a single matrix of summarized
data from many runs.

The processing function takes two inputs: a list of text objects that are names
of output files from the simulation and a text object to be used for a filename for the
processed ouput. We go to the directory where the output files are, determinc the
number of files to included, and iterate through the file names.

For each file name, we load the output file. We determine the number of
rebuilding harvest levels included in this output file. We create an object TTR.m with

one row per harvest level and fifteen. The first column is used to store the run name.
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Box 2.1a Processing.R

Processing = function(run.names, file.name){
setwd (“~ /Simulation/Simulationout”)
r.max = length(run.names)
for(r in 1:r.max){
load(paste(run.namesfr], “out.Rdata” ,sep=""))
f. max = length({out[[3]]$harvest.fraction)
TTR.m = matrix(0, nrow = f.max, ncol = 15)

TTR.m[,1] = rep(run.names[r], f.max)

We attach the list from the output file-—to allow easier referencing of its contents.
The second column is for rebuilding times, the second column for harvest levels. The
remaining columns are filled with the input parameters used to generate the rebuilding
times.

We now detach the list from the environment to prevent the R workspace
from being overburdened with assigned values. We save the object TT' R.m to a comma
delimitted file and move to the next run name/output file. Each new TTR.m is added
to the same file. The command “append=TRUE” allows the data to be added to a

current file without overwriting the data already present in the file.
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Box 2.1b Processing.R cont.

attach(out)
TTR.m[,2] = out{[4]] # rebuilding times
TTR.m[,3] == parms$harvest.fraction
TTR.m[,4] = rep(parms$rf, f. max)
TTR.m[,5] = rep(parms$p.phi, f.max)
TTR.m[,6] = rep(parms$p.mu, f.max)
TTR.m[,7] = rep(parms$p.gamma, f.max)
TTR.m[,8] = rep(parms$phi.hat, f.max)
TTR.m[.9] = rep(parms$mu.hat, f.max)
TTR.m[,10] = rep(parms$gamma.hat, f.max)
TTR.m[,11] = rep(parms$c.phi, f.max)
TTR.m[,12] = rep(parms$c.mu, f.max)
TTR.m[,13] = rep(parms$c.gamma, f.max)
TTR.m[,14] = rep(parms$v.gamma, f.max)
TTR.m[,15] = rep(parms$sigma.p, f.max)

detach(out)

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Box 2.1c Simulation.R (cont.)

write.table(TTR.m, file = paste(“~/Simulation/ttr”, file.name,“.txt”, sep = “”),
append = TRUE, sep = “7, row.names = FALSE, col.names = FALSE)
} # end r loop

} # end function

B.2.2 Plotting

Objective: 1 describe how to input a summary matrix created by Processing.R and
make plots.

To generate Figure B.2, we input a data matrix (TTR) generated by the pro-
cessing script with column names added. We input the values for ciA>, it, and 4 we would
like to plot.

We attach the object TTR, so that we can easily call on the column names.
Next, we write conditions to seclect the cases of interest. We create conditions for
the case of no maternal effect (cond.noME), the case of a maternal effect in only the
pre-settlement stage (cond.A) and the case of a maternal effect in both pre- and post-
settlement stages (cond.B and cond.C).

Since the condition of no maternal effect is the same for all these plots, we go
ahead and create an object with the values of timme to recovery versus harvest fraction

in th case of no maternal effect. The vector is ordered to facilitate neat plotting.
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Figure B.2: Example of output from plotting script, where phi.cond=1, mu.cond=0.01,
and gamma.cond=>5e-6.
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Box 2.2a Plotting.R

Plotting = function(TTR,phi.cond,mu.cond,gamma.cond){
attach(TTR)
cond.base = phi.hat==phi.cond & mu.hat==-mu.cond &

gamma.hat==gamma.cond

cond.A = p.mu==0 & p.gamma==0 & v.gamma==0 & cond.base
cond.B = p.phi==1 & p.mu==0.4 & v.gamma==0.01 & cond.base
cond.C = p.mu==0.4 & p.gamma==0.4 & v.gamma==0.01 & cond.base
cond.noME = cond.A & p.phi==0

tmp.noME = cbind(harvest.fraction[cond.noME}, ttr[cond.noME])

tmp.noME = tmp.noME[order(tmp.noME[,1]),]

Next, we identify the levels of the other variables of interest. For each variable we create
a vector of text elements to be used in the legend and a vector of numeric elements to
be used iu plotting, and then we determine the number of levels of the variable. In the
case of ¢ and v we rename the element zero to read “no effect.”

We also find the length of the object TTR.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Box 2.2b Plotting.R cont.

F.hat.txt = levels(factor(harvest.fraction))
F.hat = as.numeric(F.hat.txt)
F.max = length(F.hat)

phi.txt = levels(factor(p.phi))
phi.levels = as.numeric(phi.txt)
p.max = length(phi.levels)
phi.txt=c(“no effect” ,phi.txt[2:p.max])

mu.txt = levels(factor(p.mu))
mu.levels = as.numeric(mu.txt)
m.max = length(mu.levels)

gamma.txt = levels(factor(p.gamma))
gamma.levels = as.numeric(gamma.txt)
g-max = length(gamma.levels)

gamma.txt=c(“no effect” gamma.txt[2:g.max])

ttr.max = max(ttr)

We open a quartz device and set it to accommodate six plots. Quartz devices are the
graphical device used by Mac OSX, but other operating system rely on other types of
graphical devices. We create a scaling factor “leg.cex” to help with the uniform sizing
of the legends.

The first plot, Figure B.2(A), is time to recovery versus harvest fraction in the
case that the maternal effect only impacts the pre-settlement stages. The initial plot
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command creates the plotting frame, names the axes, etc., but it does plot any data.
For each value of py, the data are selected, ordered, and then plotted. The dashed line
is added for the case of no maternal effect. Finally a legend is added and the label “(A)”

is added.

Box 2.2c Plotting.R cont.

quartz{width=6,height=7.5)
par(mfcol=c(3,2),cex.axis=1.5,cex.lab=1.5, mex=1.5,mar=c(5,4,2,2)+.1)

leg.cex = 1

plot(F.hat type=“n",ylab=“TTR - time to recovery”,
xlab=expression(hat(F)~~-~~harvest~~rate),

ylim=c(0,ttr.max),xlim=range(F.hat))

Box 2.2d Plotting.R cont.

for(p in 2:p.max){
tmp = cbind(harvest.fraction[cond.A & p.phi == phi.levels|p]|,
ttr[cond. A&p.phi == phi.levels[p]])
tmp=tmp[order(tmpl,1]),]
points(tmp,type=*b” pch=p,col=p)

} # end p loop
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Box 2.2e Plotting.R cont.

lines(tmp.noME, lty=“dashed”)
legend(0,ttr.max,legend=phi.txt,pch=c(-1,2:p.max),
lty=c(2,rep(-1,(p.max-1))),col=1:p.max,
title=expression(p[phil]),bty="“n" ,cex=leg.cex)

mtext( “(A)” ,Side:3,line: 1 7a‘d]:0)

We do the same to create panels (C) and (E), using the new condition and allowing pg

or p, to vary.

Box 2.2f Plotting.R cont.

[T )

plot(F.hat type="“n" ylab=“TTR - time to recovery”,
xlab=expression(hat(F)~~-~~harvest~~rate),

ylim=c(0,ttr.max),xlim=range(F.hat))

Box 2.2g Plotting.R cont.

for(p in 1:p.max){
tmp = cbind(harvest.fraction[cond.C & p.phi == phi.levels[p]],
ttr[cond.C & p.phi == phi.levels[p]])
tmp==tmp[order(tmp[,1]),]
points(tmp,type=“b” pch=p,col=p)

} # end p loop
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Box 2.2h Plotting.R cont.

lines(tmp.noME,lty=“dashed”)
legend(0,ttr.max,legend=phi.txt,pch=c(-1,2:p.max),
lty=c(2,rep(-1,(p.max-1))),
col=1:p.max, title=expression(p[phi]),bty="“n" cex=leg.cex)

mtext(“(C)” side=3,line=1,adj=0)

Box 2.2i Plotting.R cont.

plot(F.hat,type=“n”,ylab=“TTR - time to recovery”,
xlab=expression(hat(F) - harvest rate),

ylim=c¢(0,ttr.max),xlim=range(F.hat))

Box 2.2j Plotting.R cont.

for(g in l:g.max){
tmp = cbind(harvest.fraction[cond.B&

p.gamma == gamma.levels[g]],ttr{cond.B & p.gamma == gamma.levels[g]])
tmp=tmplorder(tmp[,1]),]
points(tmp,type=“b” ,pch=g,col=g)

} # end g loop
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Box 2.2k Plotting.R cont.

lines(tmp.noME,lty="“dashed”)
legend(0,ttr.max,legend=gamma.txt,pch=c(-1,2:g.max),
lty=c(2,rep(-1,(g.max-1))),col=1:g.max,title=expression(p[gammal), bty="n",
cex=leg.cex)

mtext(“(E)”,side=3 line=1,adj=0)

Panel (B) is created with the same condition as panel (A). But here, py is put on the
z-axis and F' is allowed to vary. Panels (D) and (F) have similar relationships to panels

(C) and (E), respectively.

Box 2.21 Plotting.R cont.

plot(c(0:5)*.5,type=“n" ylab=“TTR - time to recovery”,
xlab=expression(p|phi|~~-~~effect~~on~~pelagic~~survival),

ylim=c(0,ttr.max),xlim=c¢(0,2))

Box 2.2m Plotting.R cont.

for(f in 1:F.max){
tmp = cbind(p.phi[cond.A&harvest.fraction==F hat[f]],
ttrfcond. A& harvest.fraction==F hat|[f]])
tmp=tmplorder(tmp],1]),]
points(tmp,type=“b”,pch=f,col=f)

} # end f loop
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Box 2.2n Plotting.R cont.

legend(0,ttr.max,legend=F .hat.txt,pch=1:F.max,
col=1:F.max title=expression(hat(F)),bty="n" cex=leg.cex)

mtext(“(B)”,side=3,line=1,adj=0)

Box 2.20 Plotting.R cont.

plot(c(0:5)*.5,type=“n",ylab=“TTR - time to recovery”,
xlab=expression(p[phi]~~-~~eflect~~on~n~pelagic~~survival),

ylim=c(0,ttr.max) xlim=c(0,2))

Box 2.2p Plotting.R cont.

for(f in 1:F.max){
tmp = cbind(p.phi[cond.C&harvest.fraction==F.hat|f]],
ttr[cond.C&harvest.fraction==F .hat|[f]])
tmp=tmp[order(tmp],1]),]
points(tmp,type=*“b”, pch=f,col=f)

} # end f loop

Box 2.2q Plotting.R cont.

legend(0,ttr.max legend=F.hat.txt,pch=1:F.max,
col:==1:F.max title=-expression(hat(F)) bty =“n" ,cox—=leg.cox)

mtext(“(D)”,side=3,line=1,adj=0)
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The plot is complete, we can now detach the object TTR and end the function.

Box 2.2r Plotting.R cont.

plot(c(0:5)*.2,type=“n" ,ylab=“TTR - time to recovery”,
xlab=expression(p{gammaj~~-~~effect~~on~~density~~dependence),

ylim=c(0,ttr.max),xlim=c(0,1))

Box 2.2s Plotting.R cont.

for(f in 1:F.max){
tmp = cbind(p.gammalcond.B&harvest.fraction==F.hat|f]],
ttr[cond. B&harvest.fraction==F.hat[{]])
tmp=tmp[order(tmpl,1]),]
points(tmp,type=*“b",pch=f, col=f)

} # end f loop

Box 2.2t Plotting.R cont.

legend(0,ttr.max legend=F .hat.txt,pch=1:F.max,
col=1:F.max title=expression(hat(F)),bty="“n" cex=leg.cex)

mtext(“(F)” side=3,line=1,adj=0)

detach(TTR)

} # end function
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B.3 Functions Called

This section describes all of the original subroutines called by Simulation.R.

B.3.1 Individual Growth

Length is a calculated with the von Bertalanffy growth function described in
Equation 3.9. The code for executing this calculation is given in Box 3.1a and the

outcome is illustrated in Figure B.3.
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Figure B.3: The von Bertalanffy growth function connects length to age. Here, Lo, =
53.25 cm, k = 0.15 cm/day and to = —2.84 days.

Box 3.1a VBFUN.R

VBFUN = function(L.inf,k,t.0,age){
L.inf*(1-exp(-k*(age-t.0)))

}
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B.3.2 Natural Mortality

Adult natural mortality is described by Equation 3.11. The code to calculate

this function is given in Box 3.2a and the outcome is illustrated in Figure B.4.
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Figure B.4: The rate of natural mortality for adults, as a function of body length and
as a function of age. Here, my = 0.03 and mq = 0.8

Box 3.2a NatMFUN.R

NatMFUN = function(m.0,m.1,L){

m.0 + m.1/L

}

The parameters mg and m; are estimated. I used the population length distribution

and natural mortality rate estimated in the stock assessment (Ralston and Dick 2003). T

input the length distribution and solved for the valies of mg and m; that yielded an av-

erage natural mortality rate equal to the stock assessment estimate of M = 0.115 yr~*.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.3.3 Maturity

The probability of an adult being reproductively mature is described in Equa-

tion 3.2. The code to calculate this function is given in Box 3.3a.

Box 3.3a maturityFUN.R

maturityFUN = function(length.fiftymat, curvaturemat, length.vector){

(1+exp(-curvaturemat*(length.vector - length.fiftymat))) ~ -1

}

B.3.4 Maternal Effects Model

The maternal effects model is described in Section 3.2. There are several
functions that contribute to the maternal effects model. The settlement rate is described
in Equation 3.4 and the code to calculate this is given in Box 3.4a. The rate of density-
independent juvenile mortality is described in Equation 3.5 and the code to calculate
this is given in Box 3.4b. The rate of density-dependent juvenile mortality is described
in Equations 3.6-3.7 and the code to calculate this is given in Box 3.4c. The outcomes

for these functions are illustrated in Figure B.5.

Box 3.4a phiFUN.R

phiFUN = function(phi.min,phi.gain,a.ME,c.a,age){
phi.hi = phi.gain*phi.min
phi.min + phi.hi/(1+exp(-c.a*(age-a.ME)))

}
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Figure B.5: Panel (a) shows the settlement rate with a maternal effect, ¢ = 1, Py =1,
and ¢4 = 0.8. Panel (b) shows rate of density-independent mortality for juveniles with
a maternal effect, i1 = 0.01, p, = 0.4, and ¢, = 0.8. Panel (c) shows the rate of density-
dependent mortality for juveniles with a maternal effect. Panel (c) shows only the rates
experienced by juveniles with ten year old mothers, as a function of the maternal age
of their conspecifics, ¥ = le — 6, py, = 0.4, ¢, = 0.8 and v, = 0.01. Throughout, the
inflection point of the maternal effect occurs at age ten, ayg = 10.
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Box 3.4b muFUN.R

muFUN = function(mu.max,mu.loss,a.ME,c.mu,age){
mu.low = mu.loss*mu.max
mu.max - mu.low/(1+exp(-c.mu*(age-a.ME)))

}

Box 3.4c gammaFUN.R

gammaFUN = function(gamma.max,gamma.loss,a.ME,cl.g,c2.g,age){

a.max = length(age)
gamma.low = gamma.loss*gamma.max
gamma.base = gamma.max - gamma.low/(1+exp(-cl.g*(age-a.ME)))
gamma = matrix(0,a.max,a.max)
for(i in 1l:a.max){

for(j in l:a.max){

gammali,j] = gamma.baseli]*exp(-¢2.g*(i-j))

} # end i loop

} # end j loop

gamina

}

B.3.5 Fishery Selectivity

The selectivity function is described in Equation 3.14. The code to calculate

this is given in Box 3.5a and the outcome is illustrated in Figure B.3.5.
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Figure B.6: The simulated fishery uses a two sided selectivity curve, based on the
selectivity function used in the most recent stock assessment of Black rockfish (Ralston
and Dick 2003). The Black rockfish fishery is dominated by recreational hook and line
fishing, leading to the upper size limit in selectivity. I normalize S by setting s, = 1.
Also, sy, =1, ¢, = 0.5, L, = 33 cm, s, = 0.3, ¢, = 0.5, L, = 45 cm.

Box 3.5a selectivity FUN.R

selectivity FUN = function(sl,s2,s3,s4,85,s6,L){
s1*(1+exp(-s2*(L-s3))) " -1 - s4*(1+exp(-s5*(L-s6))) ~ -1

}

The parameters used in the selectivity function are estimated. The stock assessment

includes selectivity functions for six different fisheries (Ralston and Dick 2003) as well
as the proportion of yield from each fishery. I fit the function in Equation 3.14 to the

weighted average of the six selectivity functions.
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B.3.6 Numerical ODE solver

In Section 2.3 1 introduce the multi-variate Beverton-Holt stock-recruitment
function given in Equation 2.15. For the many age class case, the solution of this
function requires the initial condition given in Equation 3.1.

Equation 2.14 cannot be solved analytically and must be solved numerically. 1
found the most standard numerical method (a Runge-Kutta algorithm) to be ineffective.
The difficulty is due to the stiffness of the differential equations (stiffness is usually
defined to occur when there are multiple and very disparate time scales of variability;
these time scales easily confound algorithms that are classified as explicit, such as the
Runge-Kutta algorithm (Burden and Faires 2001)).

Instead, I used a semi-implicit method: a predictor-corrector method with a
second order Adams-Bashforth algorithm as a predictor step and a second order Adams-
Moulton algorithm as a corrector step (Burden and Faires 2001). This second order
method is initialized with a fourth order Runge-Kutta with a very small step size.

In the special case of no maternal effect the problem reduces to a traditional
Beverton-Holt model with a known analytical solution (Quinn and Deriso 1999). I used
this special case to quantify the numerical error of the predictor-corrector method. I
found that the algorithm converges quickly, but the initial Runge-Kutta steps introduce
error to the final solution. However, there is never greater than one percent relative
crror, an acceptable amount of error for our purposc.

The initial steps are found with a fourth order Runge-Kutte numerical algo-

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rithm: We would like to integrate a function f(t,w), we choose a step size Ah and an
initial condition, tg, wo. We use the algorithm in Equation B.7 to calculate the constants
k1--ks. And we use these to calculate the next step with Equation B.8. We iterate for ¢

as needed.

k1= Ahf(t;, w;) (B.7)
kg = Ahf (ti + -AQ—h,’wi + %)
ks = Ahf (ti + %,wi + %)

ks = ARf (tiv1, w; + k3)

1
Wig1 = w; + g[kl + 2ko + 2k3 + k4] (B.8)
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Box 3.6a abmPECEFUN.R

abmPECEFUN = function(n.init,parms){
#4# Part 1. parameters ##
a.max = length(n.init)
T = length(parms$j.days)
h.rk = 0.001 # step size for RK4 method
h.pece = parms$h # step size for ABM pece method
abm.max = T /h.pece

T.rk = 2 # days estimated by RK4 method

## Part 2: initialize ##
n = matrix(0,nrow = abm.max, ncol=a.max)
dn = matrix(0,nrow = abm.max, ncol=a.max)
n[l,] = n.init
mu = muFUN(parms$mu.hat, parms$p.mu,
parms$a.ME, parms$c.mu, ¢(1:a.max))

gamma = gammaFUN(parms$gamma.hat, parms$p.gamma, parms$a.ME,

parms$c.gamma, parms$v.gamma, ¢(1:a.max))

The Runge-Kutte step is used to calculate the initial two steps of the predictor-corrector
method. The equation’s stitfness means that an explicit method, such as this, introduces

a great deal of error. To minimize this, I use a much smaller step size for the Runge-
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Kutte step, than the predictor-corrector step, Ah, = 0.001. It takes two thousand
iterations of the Runge-Kutte step to calculate the first two steps for the predictor-
corrector step.

For the remaining solution, I use a semi-implicit predictor-corrector method:
we would like to integrate a function f(¢,w), we choose a step size, Ah, and use our

initial values to make a prediction for w with a second order Adams-Bashforth algorithm

et = w5 3 ()~ Fltior. wi)] ©.9)

We next refine, or correct, our prediction using a third order Adams-Moulton algorithm

Ah
Wit = Wi+ o= (9 (tign, winn) +19F (8, w) =5 (tior, wimn) + fltiz,wie)]  (B.10)

We iterate in 7 until we have our solution.
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Box 3.6b abmPECEFUN.R cont.

#+4 Part 3: the RK4 initial steps #4#

rk.max = T.rk/h.rk

w = matrix(0,ncol=a.max,nrow=rk.max)

w(l,] = n[l,] # initialize

for(i in 1:(rk.max-1)){
K1 = hrk * (-mu - gamma%*% wii,]) * wli,]
K2 = hak * (-mu - gamma%*% (wii,] + 0.5*K1)) * (w[i,] + 0.5*K1)
K3 = hak * (-mu - gamma%*% (wli,] + 0.5*K2)) * (w[i,] + 0.5*K2)
K4 = hak * (-mu - gamma%*% (wli,] + K3)) * (w[i,] + K3)
wli+1,) = wli,] + (K1 + 2*K2 + 2*K3 + K4)/6

} # end i loop

for(r in 1:(T.rk-1)) {n[r+1,] = w[r/h.rk,]
dn[r,| = h.pece * (-mu - gamma%*% n[r,]) * n[r,]

} # end r loop
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Box 3.6c abmPECEFUN.R cont.

## Part 4: the ABM predictor-corrector methods ##

for(a in (T.rk+1):abm.max){

# predict: AB2
n.p = nla-1,] + (h.pece/2) * (3*dn[a-1,] - dn[a-2,])

dn.p = (-mu - gamma%*% n.p) * n.p

# correct: AM2

nfa,] = nfa-1,] + (h.pece/12)*(5*dn.p + 8*dnla-1,) - dnfa-2,))

dnla,] = (-mu - gamma%*% n[a,]) * n[a,]

} # end a loop

out = list(n = ndn = dn, gamma = gamma, mu = 1u, recruits =

sum(n[abm.max,)]))

} # end function

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

Adams, P. B., and D. F. Howard. 1996. Natural mortality of blue rockfish, Sebastes
mystinus, during their first year in nearshore benthic habitats. Fishery Bulletin
94:156-162.

Ainley, D. G., W. J. Sydeman, R. H. Parrish, and W. H. Lenarz. 1993. Oceanic Factors
Influencing Distribution Of Young Rockfish (Sebastes) In Central California - A
Predators Perspective. California Cooperative Oceanic Fisheries Investigations
Reports 34:133-139.

Bakun, A. 1996. Patterns in the Ocean: Ocean Processes and Marine Population
Dynamics. California Sea Grant College System, National Oceanic and Atmo-
spheric Adminstration in cooperation with Centro de Investigaciones Biolgicas
del Noroeste.

Beckerman, A., T. G. Benton, E. Ranta, V. Kaitala, and P. Lundberg. 2002. Popula-
tion dynamic consequences of delayed life-history effects. Trends In Ecology and
Foolution 17:263-269.

Beckerman, A. P., T. G. Benton, C. T. Lapsley, and N. Koesters. 2006. How effective are
maternal effects at having effects? Proceedings of the Royal Society B-Biological
Sciences 273:485-493.

Benton, T. G., E. Ranta, V. Kaitala, and A. P. Beckerman. 2001. Maternal effects and
the stability of population dynamics in noisy environments. Journal of Animal
Ecology 70:590--599.

Berkeley, S. A., C. Chapman, and S. M. Sogard. 2004a. Maternal age as a determi-
nant of larval growth and survival in a marine fish, Sebastes melanops. Ecology
85:1258-1264.

Berkeley, S. A., M. Hixon, R. Larson, and M. Love. 2004b. Fisheries Sustainability via
protection of age structure and spatial distribution of fish populations. Fisheries
29:23-32.

Birkeland, C., and P. K. Dayton. 2005. The importance in fishery management of
leaving the big ones. Trends In Ecology and Evolution 20:356-358.

Bjorkstedt, E. P., L. K. Rosenfeld, B. A. Grantham, Y. Shkedy, and J. Roughgarden.
2002. Distributions of larval rockfishes Sebastes spp. across nearshore fronts in
a coastal upwelling region. Marine Ecology-Progress Series 242:215-228.

Bobko, S. J., and S. A. Berkeley. 2004. Maturity, ovarian cycle, fecundity, and

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



age-specific parturition of black rockfish (Sebastes melanops). Fishery Bulletin
102:418-429.

Boehlert G.W. and M.M. Yoklavich. 1983. Effects of temperature, ration, and fish size
on growth of juvenile black rockfish, sebastes-melanops. Environmental Biology
Of Fishes. 8(1):17-28.

Burden, R. L., and J. D. Faires. 2001. Numerical Analysis, seventh edition. Brooks/Cole
Thomas Learning, Pacific Grove.

Chu, P. S., and R. W. Katz. 1985. Modeling and Forecasting the Southern Oscillation:
A Time-Domain Approach. Monthly Weather Review 113:1876-1888.

Dorn, M. 2002. Advice on West Coast rockfish harvest rates from Bayesian meta-
analysis of stock-recruit relationships. North American Journal Of Fisheries
Management 22:280--300.

Fogarty, M. J. 1993. Recruitment in randomly varying environments. ICES Journal Of
Marine Science 50:247.

Field, J. C. and S. Ralston. 2005. Spatial variability in rockfish (Sebastes spp.) recruit-
ment events in the California Current System. Canadian Jouwrnal of Fisheries
and Agquatic Sciences 62(10): 2199-2210

Ginzburg, L. R. 1998. Inertial Growth: Population Dynamics Based on Maternal Ef-
fects. Pages 42--53 in T. A. Mousseau and C. W. Fox, editors. Maternal Effects
as Adaptations. Oxford University Press, New York.

Harvey, C. J., N. Tolimieri, and P. S. Levin. 2006. Changes in body size, abundance,
and energy allocation in rockfish assemblages of the northeast Pacifc. Feological
Applications 16:1502-1515.

Haddon, M. 2001. Modelling and Quantitative Methods in Fisheries, Revised Printing
edition. Chapman and Hall, Boca Raton, FL.

Hilborn, R. and M.Mangel. 1997. The ecological detective : confronting models with
data, vol.28. Princeton University Press, Princeton, New Jersey

Hislop, J. R. G. 1988. The influence of maternal length and age on the size and weight
of the eggs and the relative fecundity of the haddock, Melanogrammus acglefinus.
British waters. Journal of Fish Biology 32:923-930.

Hixon, M. A., and G. P. Jones. 2005. Competition, predation, and density-dependent
mortality in demersal marine fishes. Fcology 86:2847-2859.

Hixon, M. A., and M. S. Webster. 2002. Density Dependence in Reef Fish Populations.
in P. F. Sale, editor. Coral Reef Fishes. Academic Press, San Diego.

Hobson, E. , J. Chess, and D. Howard. 2001. Interannual variation in predation on
first-year Sebastes spp. by three northern California predators. Fishery Bulletin
99:292- 302.

Hogg, R. V., and A. T. Craig. 1959. Introduction to mathematical statistics. Macmillan
New York.

Hollowed, A. B., S. R. Hare, and W. S. Wooster. 2001. Pacific Basin climate vari-
ability and patterns of Northeast Pacific marine fish production. Progress In
Oceanography 49:257-282.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Johnson, D. W. 2006a. Density dependence in marine fish populations revealed at small
and large spatial scales. Ecology 87:319-325.

Johnson, D. W. 2006b. Predation, habitat complexity and variation in density-dependent
mortality of temperate reef fishes. Ecology 87:1179-1188.

Lacey, E. P. 1998. What is and Adaptive Environmentally Induced Parental Effect?
Pages 54-66 in T. A. Mousseau and C. W. Fox, editors. Maternal Effects as
Adaptations. Oxford University Press, New York.

Lenarz, W., R.Larson, and S.Ralston. 1991. Depth distributions of late larvae and
pelagic juveniles of some fishes of the California Current. California Cooperative
Oceanic Fisheries Investigatinos Reports. 32:41-46.

Lorenzen, K. 2000. Allometry of natural mortality as a basis for assessing optimal
release size in fish-stocking programmes. Canadian Journal Of Fisheries And
Aquatic Sciences BT:2374-2381.

Love, M. S., M. H. Carr, and L. J. Haldorson. 1991. The Ecology Of Substrate-
Associated Juveniles Of The Genus Sebastes. Environmental Biology Of Fishes
30:225-243.

Love, M. S., M. Yoklavich, and L. Thorsteinson. 2002. The Rockfishes of the Northeast
Pacific. University of California Press, Berkeley.

Ludwig, G. M., and E. L. Lange. 1975. The Relationship of Length, Age, and Age-
Length Interaction to the Fecundity of the Northern Mottled Sculpin, Cottus b.
bairdi. Transactions Of The American Fisheries Society 104:64-67.

Mangel, M. S., H.K. Kindsvater, and M.B. Bonsall. 2007. Evolutionary analysis of life
span, competition, and adaptive radiation, motivated by the Pacific rockfishes
(Sebastes). Evolution 61(5):12081224

Marteinsdottir, G., and G. A. Begg. 2002. Essential relationships incorporating the
influence of age, size and condition on variables required for estimation of repro-
ductive potential in Atlantic cod Gadus morhua. Marine Ecology Progress Series
235:235-256.

Methot, R.D. 2005. Technical Description of the Stock Synthesis IT Assessment Program
Version 1.17 March 2005.

Miller, J. A., and A. L. Shanks. 2004. Evidence for limited larval dispersal in black
rockfish (Sebastes melanops): implications for population structure and marine-
reserve design. Canadian Journal Of Fisheries And Aquatic Sciences 61:1723--
1735.

Moser, H. and G.Boehlert. 1991. Ecology of pelagic larvae and juveniles of the genus
Sebastes. Environmental Biology of Fishes 30(1):203-224.

Munch, S., A.Kottas, and M.Mangel. 2005. Bayesian nonparametric analysis of stock-
recruitment relationships. Canadian Journal of Fisheries and Aquatic Sciences
62(8):1808-1821.

Munch, 5.B., M.L. Snover, G.M. Watters, and M.Mangel. 2005a. A unified treatment of
top-down and bottom-up control of reproduction in populations. FEeology Letters
8(7):691695.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



OFarrell, M. R., and L. W. Botsford. 2005. Estimation of change in lifetime egg pro-
duction from length frequency data. Canadian Journal of Fisheries and Aquatic
Sciences 62:1626.

O’Farrell, M. R., and L. W. Botsford. 2006. The fisheries management implications
of maternal-age-dependent larval survival. Canadian Journal of Fisheries and
Aquatic Sciences 63:2249-2258.

Palumbi, S. R. 2004. Fisheries science - Why mothers matter. Nature 430:621--622.

Paradis, A.R. P.Pepin, and J.A. Brown. 1996. Vulnerability of fish eggs and larvae
to predation: Review of the influence of the relative size of prey and predator.
Canadian Journal of Fisheries and Aquatic Science53(6):1226-1235

Pechenik, J. A., D. E. Wendt, and J. N. Jarrett. 1998. Metamorphosis Is Not a New
Beginning. BioScience 48:901-910.

PEFMC (Pacific Fisheries Management Council). 2006. Pacific Coast Groundfish Fishery
Management Plan For the California, Oregon, and Washington Groundfish Fish-
ery As Amended Through Amendment 17. [Internet]. Pacific Fishery Manage-
ment Council, Portland, OR. December 2006. Available from www.pcouncil.org

Pikitch, E.K., C. Santora, E. A. Babcock, A. Bakun, R. Bonfil, D. O. Conover, P.
Dayton, P. Doukakis, D. Fluharty, B. Heneman, E. D. Houde, J. Link, P. A.
Livingston, M. Mangel, M. K. McAllister, J. Pope, K. J. Sainsbury. 2004.
Ecosystem-Based Fishery Management. Science 305(5682): 346-347

Plaistow, S. J., C. T. Lapsley, and T. G. Benton. 2006. Context-dependent intergener-
ational effects: The interaction between past and present environments and its
effect on population dynamics. American Naturalist 167:206--215.

Plaza, G., G. Claramunt, and G. Herrera. 2002. An intra-annual analysis of inter-
mediate fecundity, batch fecundity and oocyte size of ripening ovaries of Pacific
sardine Sardinops sagaz in northern Chile. Fisheries Science 68:95 -103.

Quinn, T. J., II, and R. B. Deriso. 1999. Quantitative Fish Dynamcis. Oxford Univer-
sity Press, New York.

Ralston, S., and E. J. Dick. 2003. The Status of Black Rockfish (Sebastes melanops)
Off Oregon and Northern California in 2003. Stock Assessment 655. [Internet].
Pacific Fishery Management Council, Portland, OR. May 2007. Available from
http:/ /www.pcouncil.org/groundfish/gfsafe0803 / gfsafe0803.html

Ralston, S., and D. F. Howard. 1995. On The Development Of Year-Class Strength
And Cohort Variability In 2 Northern California Rockfishes. Fishery Bulletin
93:710-720.

Sakuma, K., S.Ralston, and D.Roberts. 1991. Diel vertical distribution of postflexion
larval Citharichthys spp. and Sebastes spp. off central California. Fisheries
Oceanography. 8(1):68-76.

Shima, J. S., and A. M. Findlay. 2002. Pelagic larval growth rate impacts benthic
settlement and survival of a temperate reef fish. Marine Ecology Progress Series
235:303-309.

Sissenwine, M. P. 1984. Why Do Fish Populations Vary? Pages 59-94 in Exploitation
of Marine Communities. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sogard, S. M. 1997. Size-selective mortality in the juvenile stage of teleost fishes: A
review. Bulletin Of Marine Science 60:1129-1157.

Spencer, P., D. H. Hanselman, and M. W. Dorn. 2005. The effect of maternal age of
spawning on estimation of Fmsy for Alaska Pacific ocean perch. in Proceedings
of 23rd Wakefield Symposium. Alaska Sea Grant, Anchorage, Alaska.

Walters, C. and S.Martell. 2004. Fisheries Ecology and Management. Princeton Uni-
versity Press, Princeton, New Jersey

Zwillinger, D. 1992. Handbook of Differential Equations, 2nd edition. Academic Press,
San Diego.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



